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Abstract

In this paper we present a new rate-based tlow control scheme for ATM ABR services and analyze its performance. The
proposed algorithm, which we refer 1o as first-order rate-based flow control (FRFC) is the most simple form of
gueue-fength-based flow control. The asymptotic stability, the steady-state throughput. queue length and fairness. and the
transient behavior are analyzed for the case of multiple connections with diverse round-trip delays. We also consider a novel
approach to dynamically adjust a queue threshold in the FRFC according to the changes in the available bandwidth. and the
arrival and departure of connections. Simulations show that the simple FRFC with dynamic queue threshold (DQT)
effectively maintains high throughput. small loss and a desired fairness in these dynamic environments and is a promising
solution for ABR flow control in ATM networks. © 1998 Elsevier Science B.V.

Kevwords: ATM networks: ABR flow control: Stability: Fairness: Dynamic queue threshold

1. Introduction

Recently there has been a great interest in feed-
back-based tlow control for high-speed wide-arca
networking. In particular. a rate-based approach has
been studied extensively [2.4.5.7—10] and adopted by
the ATM Forum as the standard for the flow control
of the Available Bit Rate (ABR) service [4.11].

The rate-based flow control problem in high-speed
wide-area networks can be stated as follows. Con-
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sider a network with a single bottleneck link as
depicted in Fig. I. The geographically distributed
sources transmit data into the bottleneck node in
their path at the rate allocated by the node. In reality.
the bottleneck can be any node in the network and
for simplicity, we consider only a single link in the
network as a bottleneck. The switch computes the
rates that will be allocated to the sources. In the
queuc-length-based rate control that we consider n
this paper, the rates are computed based on a certain
function of the difference betwceen the observed queue
length and a queue threshold. In this type of ap-
proach. a certain fairness in rate allocation among
users is accomplished as a consequence of the
queue-length control. Examples of this type can be
found in [2.5.7.10]. The other type of rate-based flow
control [3.9] is to compute dircctly rate allocations in
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Fig. . Network modet with a single bottleneck link.

a way that a certain fairness property is satistied.

Typically. in this latter approach. the queue length is

not explicitly controlled. Communication between

the node and the sources is done via special cells that
are embedded into the individual data streams. It is
well understood that the large bandwidth-delay prod-
uct involved in the problem can cause a loose control
with non-negligible loss and link under-utilization.

There are important criteria in the design of high-
performance ABR flow control algorithms. In the
following we summarize the criteria considered in
this paper:

+ Maximal link utilization and small cell loss. and
consequently maximal throughput in steady-state.

- Stability (preferably asymptotic stability) of the
steady-state solution for the case of multiple vir-
tual circuits (VCs) with long and diverse round-
trip delays.

- Fair bandwidth allocation among ABR streams:;
guarantee of standard fairness criteria such as
MAX-MIN fair share [11].

- Good transtent performance such as fast and uni-
form convergence irrespective of number ol ac-
tive VCs.

- Adaptability to the changes n the operational
environment. for instance. changes in available
bandwidth and the number of active VCs.

- Simplicity in implementation.

To meet these criteria. we introduce a new rate-based

flow control algorithim which we refer 1o as first-

order rate-based flow control (FRFC). The FRFC is

a queue-length-based flow control algorithm where

the rate allocated to each ABR user is the difference

between observed network queue tength and gueue
threshold, multiplied by a control gain. In contrast.
most other existing queue-length-based algorithms

[2.5-7.10] control the derivative of the rate as a

certain function of queue length and thus is viewed

as a second-order rate control. The analysis in the
paper will show that the proposed algorithm can
make the network queue and the user rates asymptot-
ically stable even for the case of multiple VCs with
long and diverse delays. if the control gains are
properly chosen. Also. it will be shown that in the
steady state the rate allocation satisfies the MAX—
MIN fairness criterion. To further improve the per-
formance of the FRFC algorithm in dynamic envi-
ronments where available bandwidth varies and VCs
frequently join and leave. we consider an approach
to dynamically change the queue threshold in the
FRFC whenever the changes in the available band-
width and the set of active VCs are detected. The
stmulation study shows that the simple FRFC with
dynamic queue threshold (DQT) effectively main-
tains high throughput. small loss, and MAX-MIN
fairness i rate allocation in such dynamic environ-
ments.

The puper is organized as follows. Section 2
describes the network model and the FRFC algo-
rithm. In Section 3, the asymptotic stability and
steady-state response of the network with FRFC are
addressed. Transient behavior is considered in Sec-
tion 4 and the dynamic queue threshold is introduced
in Scction 5. In Section 6 simulations are presented.
and the conclusion appears in Section 7.

2. Model and control algorithm

The assumptions emploved for the analysis of the
FRFC algorithm are as follows and are fairly stan-
dard [2.7.5};

A.l. The tratfic is viewed as a deterministic fluid
flow and the network gueueing process and the
feedback control is continuous in time. This as-
sumption enables us to model the closed-loop
system by a ditferential cquation.

A.2. The round-trip-time. 7,. of virtual ¢ircuit 7 is the
sum ol forward-path delay. 7). and  the
backward-path delay. 7. which consists of prop-
agation. queueing, transmission and processing
times. We assume that 7, is & constant. This is a
reasonable assumption in a wide-arca network
where propagation delays are expected to domi-
nate.
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A.3. The sources are persistent until the system
reaches steady state. By the term persistent. we
means that the source always has cnough data to
transmit at the allocated rate.

A.4. There are no arrivals and departures of virtual
circuits until the system reaches steady state.
A.5. The available bandwidth of the bottleneck link
is constant until the system reaches steady state.
Also. the buffer size at the botteneck link is

assumed infinite.

The assumptions A.4-A.5 will be removed as neces-
sary in Section 5 and in Section 6 to deal with
dynamic environments.

Let r(s), i=1..... n. denote the rate allocation
to virtual circuit i, which is computed by the switch
at time . Also. let ¢(t). g(r) and p respectively
denote the queue length. its derivative at ime 7. and
the available bandwidth at the bottleneck link. The
rate-based flow control algorithm that we introduce
in this paper is a switch algorithm of the following
simple form:

K

r( == e —ar)| . K>0. (1)
where K, 1s the control gain, ¢ 1s the queue length
threshold tor the flow control, and the symbol {-)
denotes max{ -, 0}. We will refer to this algorithm as
first-order rate-based flow control (FRFC) since as
we will see. the behavior of the closed-loop system
with this form of algorithm is governed by a first-
order differential equation. In contrast. most other
existing algorithms found in [2,5-7.10] can be viewed
as o second-order flow control since the rate is
modulated via its derivative and thus the behavior of
the closed-loop system is governed by a second-order
differential equation. For instance, the algorithm in
[6.7] has the following form:

Ft)y= —a;r (1) + b(g(1) — g1). (2)

where «, and b, are two control constants. A feature
of the algorithm (1) is the control gain K, scaled by
the number of VCs n. It will be shown later that
such a scaling can lead to a uniform convergence of
the bottleneck queue irrespective of the number of
VCs. Another property of the algorithm (1) is that
the closed-loop system has no stable equilibrium
point when ¢(7) is greater than or equal 0 ¢y. In

other words, as ¢(7) grows and exceeds ¢-. the rate
allocation (1)} becomes zero and thus with a delay
the total arrival rate gets smaller than the available
bandwidth at the bottleneck link. Thus. ¢(¢) cannot
be asymptotically stabilized at a value greater than or
equal to ¢4. As we will see. ¢(1) has only two
cquilibrium states: one at a positive value smaller
than ¢, and the other at zero depending on the
network operational environment and the choice of
the control gain parameters.
According to the above assumptions. the queueing

process at the bottleneck link 1s given as

i

Yor(i—7) -

i=1

g(ry=+, r (3)
Lrli=7)-u

N

¢(1) >0,

In the next section we investigate the steady-state
solutions and the asymptotic stability of these solu-
tions when the control (1) is applied.

3. Steady-state analysis and stability

We suppose that there exist equilibrium points for
the closed-loop system and let ¢, and r,, respec-
tively denote the steady-state solution of (1) and
r{1). At equilibrium. we have lim, _,¢{r) =0 and
thus from (3)

n

N, —u=0. il ¢, >0. (4)
i
" !
( Yo, = ,u) =0, if g, =0, (5)
WA /
and from Egq. (1).
. K Lt
'm:(——%m“qﬂ)-Vh (6)
n

|

First consider the case with 0 <g¢, < ¢;. From Egs.
(4) and (6). we find that it ¢, > nu/Y" K.

i K
Y, FYr T Ty, T Vi
/ /T YK, “

Next we consider the case with ¢, =0 <g¢y. Simi-
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tarly, from Eqs. (5) and (6), we obtain that if ¢, <
nu/TL
K K

! i

ry., = _C[ =
L T n
XK

The following proposition states the result.

¢, =0 u. Vi

Proposition 3.1. For FRFC, there are two steady-
state  solutions  (equilibrium  points): if ¢ >

np/Ly K

np K, '
q,:qT—W; ;',,:Wy.Vl. (7)
otherwise.
K, K, .
g, =0 r, ‘_(/1 YK ,u,Vl. (8)

Note that ¢, cannot be greater than or equal to
the control threshold ¢. The network queue can be
stabilized at either zero or a certain value smaller
than ¢;. For given npu, the choice of ¢ and K.
i=L....,n, determines where for the system to con-
verge. If ¢ and K,. i=1..... n are chosen such
that gy > np /X7 K,. the system has the equilib-
rium in Eq. (7) where the bottleneck link is fully
utilized and any desired sharing of the bottleneck
bandwidth can be accomplished through a proper
selection of control gains. For instance. by taking
identical gains, one can achieve MAX-MIN fair
bandwidth sharing. On the other hand. it ¢, and K
i=1...., n are chosen such that g, <np/L"
the system has the equilibrium in (8) where lhe
bandwidth sharing can be sull fair but the available
bandwidth cannot be fully utilized.

Now we investigate the asymptotic stability of the
equilibrium point (7) where full link-utilization is
achieved. Informally, asymptotic stability implies that
all trajectories of the system. in this case the queue
length and consequently the source rates as well,
which start within some bound of the equilibrium
point remain within another bound of the equilibrium
point and further the trajectory asymptotically ap-
proaches the equilibrium point. The rigorous defini-
tion of asymptotic stability of equilibrium points can
be found in [1]. In the following, we analyze only the
local asymptotic stability and the global asymptotic

stability is investigated via simulations only. This is
similar to the approach in [2]. For understanding the
local stability, we can ignore the non-linearities in-
troduced by the buffer floor. ceiling and the control,
and the queueing process at the bottleneck link can
be written as

n

g1y =Y r(1—1)—p. (9)
=1
and
K{
ri1) == —(q(1) = a1). (10)

respectively. Define

e(r)y=q(t) —q.=q(1) — g + (11)

m
E’f’: I KI '
By combining Egs. (9)-(11), we obtain the follow-
ing closed-loop equation:

1
é(t) +-Zke(r—7 =0, (12)
o
which is a first-order retarded differential equation
[1.12]. The characteristic equation of the closed-loop
Eq. (12). denoted by D(s). is

I)(s)—s-l—lZKe”’:(), (13)
i=

which is an exponential polynomial of s. For asvmp-

totic stability of the closed-loop Eq. (12). all the

roots of the characteristic Eq. (13} must have nega-

tive real parts [1,12].

To find the necessary and sufficient condition for
D(s)=0 to have stable roots, one can appeal 1o
Pontryagin’s criterion [1,7] assuming discrete delays
of rational ratios. For more general case with contin-
uous delays or discrete delays of irrational ratios, to
which our problem belongs. Stépan’s criterion [12]
provides a way to construct the necessary and suffi-
cient condition. However, constructing such a condi-
tion in an explicit form is extremely complicated for
the system with multiple connections of diverse
round-trip delays.

Instead of finding the necessary and sufficient
condition. we will derive a useful sufficient condi-
tion for the asymptotic stability of the equilibrium
point (7). The following theorem in [12], which we
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re-state below for convenience, provides the means
to construct the necessary condition.

Theorem 3.1. Consider the characteristic function
D(s) given by
d
D(s)= ¥ (= D)'a ()5 (14)
i=0
Suppose that there exist the polynomials R*. R™. 57
and S~ such that

R (w)<R(w)=ReD(iw) <R (w).  (I5)
S (w)<S(w)=ImD(iw) <S" (w), (16)

for w € [0, ). Suppose that R* and R
same number of real positive zeros. These zeros are
denoted by p| =2 -+ = plf> Oand p, =z - =
p, >0 and they determine the intervals Iy, =
[min{p,, p/} max{p,, p/} (U=1..p) In ex
actly the same way, the zeros of S and S~ define
the intervals Ig, (j=1.....q). Furthermore, let all
these intercals be disjoint and let us choose the

have the

representative real numbers p) €1, (1=1....,p)
and o' €1, (j=1....,4—1).

All the roots of the characteristic equation D(s)
= 0 have negative real parts if

d=2m,
S(p}');ﬁ(), (=1,....p.

P ( (17)
Y (=D'senS(p))=(-1)"m:

-1

or

d=2m+ 1.

R(a')#0.j=1.....g 1,

R(0) >0,

g |

Y (=1) sgn R(U’,“) +

j=1
+(=1)"m=0,
(18)

where m is integer and the symbol sgn denotes sign
Sfunction.

The above theorem leads to the following result.

Proposition 3.2. The closed-loop system (12) is
asvmpiotically stable if (1 /)L K 1, < 1.

Proof. From Eq. (13), we have d =1 (m = 0) and

R(w) = lz i K, cos( wT,).
; (19)

S(w)=w-— Y K,sin(w7,).
n

i

(=

Since K> 0. Vi, the second condition in Eq.
(18), R(0) > 0, is satisfied. On the other hand, one
can estimate S(w) in the following way:

S(w) >S5 (w) = (l ~l iK'T')w. we (0,%),
\ e
(20)

since sin(wt,) < wr, for w € (0,%). If
(1 /M7 K7, <1, it is obvious that S{(w) has no
real positive zeros since it 1S positive for w €
(0.). Thus, no s exist and hence the first and the
second stability conditions in (18) are degenerated,
independently from the polynomial estimation of
R(w). Theorem 3.1 implies the statement of the
proposition. [J

Since the above condition for stability is only a
sufficient condition, the question naturally arises as
to its tightness. Consider the case that K, =K, Vi.
In this case, the condition implies that K < Tm:i,
where 7, is the average round-trip delay of all the
active VCs, e, 7, = (X! |7,) /n. 1t will be shown
in the next section that the closed-loop system con-
verges nearly exponentially and the gain K serves as
the damping constant of the exponential decay. Since
any reactive feedback-based tlow control scheme in
a wide-area network can only be expected to con-
verge to the equilibrium point as fast as the average
round-trip delay will permit. we hence conjecture
that the condition for asymptotic stability is fairly
tight in spite of being only a sufficient condition.
The simulation studies in Section 6 will provide
further evidence of the fast convergence even when
the control parameters are set in accordance with the
potentially restrictive sufficient condition. In addi-
tion. it is very difficult to find a sufficient and
necessary condition, in an explicit form that is read-
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ily applicable, for the case of multiple connections
with diverse round-trip delays [12]. In contrast, the
condition in Proposition 3.2 is casy to use and
requires only the estimate of average round-trip de-
lay if identical gains are chosen.

The above stability analysis technique can also be
applied to a higher-order flow control problem. In [6]
we have derived a sufficient condition for the asymp-
totic stability of a class of second-order tlow control
algorithms such as the one in (2) for the cuse of
multiple VCs with diverse delays. Also. in [7] the
Pontryagin’s criterion [1] has been applied to the
second-order flow control problem.

4. Transient analysis

In this section, we consider the transient behavior
of the ABR rate control algorithm whose behavior is
governed by the first-order delayed differential equa-
tion in (12), or equivalently

l " l %
() + =LY Kg(i—=7)==2L Kq. (21)
H 1 i1

=1
subject to the initial conditions

r=1.

4 -
q(t) =
/(1) 0. 1 <0,

Consider the case that K, =K., Vi and 7, = 0. Y.
For this system. the solution of the above differential
equation 1s:

() =(qy—q.)e " +q.1>0. (23)

Note that in this section, we use e to denote the
exponential function which is not to be confused
with the error function e(7) defined in Eg. (11). We
see above that the initial error in queue length dies
exponentially fast with damping constant — K. The
question of interest is whether for the retarded dy-
namical system this is still true.

For case ol illustration, we consider the case that
K.,=K and 1, = 7, i.e.. a homogeneous system with
all sources at equal delay from the bottleneck queue.
With these values for the gain and delay, we con-
sider the solution ¢(r) of the differential Eq. (21).
The above equation can be solved using cither the

Laplace transform method or by forward deduction
proceeding a time 7 ahead in time each step and
recognizing that the queuc evolution equation does
not change in this time period. The complete solution
for ¢(¢) is then given as

. PR
g(1) =4, Z (_K)JL/T.,/_T*”(’_A/.T)
i=0 1
(24)

where #(-) is the unit step function. The sums in the
above term appear to be Taylor series expansions of
the exponential function ¢ ¥~ 7! suggesting that the
transient behavior of the retarded system also is
exponential in nature. However, close examination
shows the terms in the sum above do not exactly
match the Taylor series expansions of the exponen-
tial function due to the term 7 — j7 and the unit step
function. In fact, one can see that for 0 < < 7, the
behavior of ¢(1) is

g(1) =Ky,1+ q,. (25)

and hence the effect of the initial condition does not
diminish at all in (0. 7). However. the close resem-
blance to the Taylor series expansion tempted us to
consider an exponential approximation.

Our general exponential approximation is

g(1) = (qy=q.)e? +q,. (26)

where 3 is derived by two different means. In the
first approximation, which we label as expl. we
choose B= —K. In the second approximation. la-
belled as exp2, we obtain 8 by substituting the
above approximation for ¢(r) in Eq. (21) and solving
the implicit equation

B+Ke P =0. (27)

Note that no solution for 8 may exist in which
case we select a value of 8 which minimizes the
left-hand side of the above equation. Further. we
found in our numerical studies that better approxima-
tions were obtained by matching ¢(r) at time 1= 71
rather than at time ¢ = (0 us warranted by the initial
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Fig. 2. Transient behavior of the bottleneck queue: (a) low gain, (b) high gain.

conditions above. This is due to the distinctly difter-
ent behavior of ¢(r) in (0. 7) as outlined previously.
In this case, our general exponential approximation
can be rewritten as

q(t)=(q(7)—-qA,)eﬁ“’”-i—q,,. 1> 7. (28)

In order to verify the accuracy of the above
approximation. we carried out some numerical stud-
ies with different values of K and ¢, with 7=40
ms. Fig. 2(a) and Fig. 2(b) show the actual behavior
of the queue and the approximation above for stable
gains K =2.0 and K = 10.0 respectively. It can be
seen that the actual queue behavior is accurately
tracked by both approximations for small K. In fact,
with K= 2.0, the value of § obtained by solving
Eq. (27) is 8= —2.18 which is close to the valuc of
B in expl. For K=10.0, we find that expl is
considerably conservative compared to the actual
behavior of ¢(7) which is better approximated by
exp2. In this case, we found no solution of 8 which
satisfies Eq. (27): we choose a value of 8= —23.0
which approximately minimizes the left-hand side of
Eq. (27). This indicates that in this case ¢(7) con-
verges to its steady-state value almost twice as tast
as the gain value K= 10.0.

While the exact transient performance can be
easily computed as in Eq. (24), the exponential
approximation above serves two purposes. First, it
suggested to us that the effect of the initial condition
dies out nearly exponentially in FRFC and second it
helps us determine a thumb of rule for the transicnt

response of the system. As a thumb of rule, we may
choose 1 /K as the time constant of the system. i.e.,
the effect of the initial condition diminishes by ¢
every | /K time units. Finally. note that the transient
behavior of ¢(1) is independent of the number of
active VCs, which is a highly desirable property in
practice since il guarantees an identical speed of
convergence no matter how many VCs are active. In
contrast, it can be seen that if the gain is not scaled
by the number of VCs in the control (1), the approxi-
mation expl of the transient behavior is given by

g(1) = (gy—q.)e "M +yq,. (29)

and #K should be smaller than (1 /7, ) for asymp-
totic stability. What is undesirable in this type of
control is that one needs to estimate the maximum
number of possible VCs, say n, .. and the gain
should be selected for this extreme case such that
K< l/(nm;,\z“g). As a consequence, in nominal
cases with # much smaller than »n_,. . the system
would converge unnecessarily slowly due to the
small value of the chosen gain.

The above analysis considered a homogeneous
system. The exact transient behavior of the system
for VCs with heterogeneous delays can also be writ-
ten down in a form similar 0 Eq. (24). However,
some more analytical work is needed to understand
the qualitative transient behavior in this heteroge-
neous system as was done for the homogeneous
system above.
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5. Control with dynamic queue threshold

So far we have studied the asymptotic stability
and the steady-state solutions of the system in a
static environment where the bottleneck bandwidth
p and the set of active VCs are assumed to be
unchanged. In reality, however, these assumptions
are no longer true. The available bandwidth at the
bottleneck link is time-varying since it depends on
the instantaneous aggregate traffic of higher-priority
services such as CBR and real-time /non-real-time
VBR in ATM. Also, the set of active VCs keeps
changing due to the frequent arrival and departure of
VCs. One of the major problem in such a dynamic
environment is that the quantity ap/2"K, changes
and hence, as shown in Proposition 3.1, the equilib-
rium point (i.e., the steady-state solution) of the
system varies. More specifically. it nu /YK, grows
and exceeds ¢ due to the changes in w and the set
of active VCs, the link would become under-utilized
and the queue would converge (o zero. On the other
hand. if we choose ¢, large cnough to avoid such a
under-utilization of link bandwidth, ¢, would grow
and so the likelihood of cell loss would increase for
given buffer budget.

What is desirable in such a dynamic environment
is the capability to keep g~ nu/X'K.. ie. g,.
constant and positive. To accomplish this. the switch
can adaptively change cither ¢, or the control gains
whenever the changes in u and the set of active VCs
are detected. Considering the large number ot VCs in
a high speed link, we choose the former option. The
dynamic queue threshold (DQT) algorithm that we
propose in this paper is to change the queue thresh-
old in the following manner:

_ e .

g (1 €. €>0. (30)
z‘ IH)K

i i

where u(r) and I(¢) respectively denote time-vary-
ing bottleneck bandwidth and the set of active VCs
with cardinality [/(r)|, and € is a design parameter.
For the case with K,= K, Vi, the above DQT is
simplified to

qT(I):#;’) +e, €>0. (31)

Consider the closed-loop system behavior with no

buffer floor when the FRFC with DQT is applied.
For simplicity we assume that only w is time-vary-
ing while the number of VCs is fixed at n. Then. by
combining (3), (1) and (30), we get the following
closed-loop equation for the case with DQT:
] H
qg(ry + -~ Y. K.q(r—7)
=1
€ K,
p ,; K, —u(t) + ,;1 T K w(t—1).

(32)

In contrast, the closed-loop equation (12} for the case
with static ¢ can be rewritten as

. l i (/T n
o)+ 2 Kq(1—1,) = YK~ (1)

i= i=1

(33)

with time-varying u(r). As we see in Egs. (32) and
(33). the major difference between the DQT case and
the static queue threshold case is the third term in the
right-hand side of the DQT case. The role of this
term is to nullify the effect of time-varying u(r)
with delays. In particular, if u(r) varies slowly or is
piecewise constant with reasonably long intervals,
the term —w(0) + X_ (K, /L0 K Yulr = 7)) re-
mains small in magnitude or as a superposition of
impulses so that the effect of w(r) becomes nearly
nullified as the system approaches steady-state. In
contrast, with a static threshold. the effect of u(r)
remains governing the dynamics of ¢(r) as you see
in Eq. (33). This difference will result in superior
performances of the FRFC with DQT in dynamic
environments, as will be shown in the next section
through simulations.

The idea of dynamic queue threshold can be
applied to queue-length-based rate control mecha-
nisms of any arbitrary order. In [6]. we report its
application to a class of second-order flow control
algorithms such as the one in Eqg. (2).

6. Performance

In this section, we simulate the network model to
examine the performance of the proposed algorithm.
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First we consider a static scenario where the assump-
tions A.4 and A.5 hold. The bottleneck bandwidth p
and the buffer size B are respectively set to 150
Mbps and 5000 cells, and there are 50 active VCs
sourcing the traffic into the link. The round-trip
delay 7. of VCs is chosen uniformly in the range
[10] ms to represent long propagation delays. To take
into account the discrete-time effect of control. the
FREC is applied in the sample-and-hold manner with
intervals defined by the rate of VC. We choose this
interval aggressively long as if RM (resource man-
agement) cells [11] are issued every 128 data cells by
the ABR sources. Fig. 3(a) shows the two steady-state
solutions, (7) and (8), with K, = 10.0. ¥/, and ¢, =
500 cells. If we choose ¢4 at 35477 cells. the queue
¢(1) approaches 100 cells and the user rate r(1)
converges to the fair allocation (= 3 Mbps) as time
goes. For the illustration, the rate trajectory of a VC
with 40 ms round-trip delay is plotted in the figure.
On the other hand, it we choose ¢ at 35277 cells.
¢(1) converges to 0 and r(r) approaches 2.9915
Mbps as computed in (8). Notice that it is not
necessary for g be smaller than the buffer size B.
Fig. 3(b) shows the effect of control gains on the
queue and user rates with K, = 10.0. 15.0 and 30.0.
In the above simulation scenario, the choice of K, =
10.0, 15.0 and 30.0 satisfies the stability condition in
Proposition 3.2 since 1/7,,, = 40. While changing
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Fig. 3. Control pertormance in static environment { u = 150 Mbps,
solutions with K; = 10.0, Vi, (b) effect of control gains K.

rate of VC with 40 msec delay (Mbps)

# of VCs = 50, T

queue (cells)

2209
the gain, we kept € (=g, —nu/L | K;) positive
and constant at 100 cells by changing ¢, corre-
spondingly. For the larger K,, the system suffers
from poor transient behavior such as overshoots at
the risk of link under-utilization and cell loss. but
still remains asymptotically stable. This example tells
that the sufficient stability condition that we derive
can serve as a practically good gain selection crite-
rion.

In the remaining studies. we keep K;= 10.0 un-
less otherwise specified. Note that this value of K, is
one of the gain values examined in Section 4. We
found there that for this gain value. the actual tran-
sient behavior (convergence rate) is faster than expo-
nential for a homogeneous system. This provides
additional confidence in our choice of gain.

Next we consider dynamic environments where u
and the set of active VCs are varying. For the FRFC
with static threshold. we set ¢gp at 35877 cells
aiming at ¢, = 500 cells with w(0)= 150 Mbps.
This design implies that if g does not vary, ¢(1) will
converge to 500 cells. For the FRFC with DQT in
(30). € was fixed at 500 cells. First, we change u(r)
continuously in time with the derivatives of + 10
and +20 Mbps /s and apply the FRFC with /without
DQT. The trajectory of w(7) is plotted in Fig. 4(a) as
a solid curve. Also. in Fig. 4(a), the user rate r,(1) of
a VC with longest round-trip delay (=40 ms) is

500 L 3.04
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[10,40] ms. B = 5000 cells): (a) two steady-state
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Fig. 4. Control performance when u(f) is continuously varying (# of VCs =30, 7, € [10.40] ms. B = 5000 cclls, K, = 10.0. Vi): (a)
trajectories of p(1) (solid curve) and #{r) of a VC with 40 ms round-trip delay, (b) trajectories of (1) and bandwidth utilization.

compared for the two cases. With DQT r{1) tracks hence the user suffers from the loss of bandwidth.
well u(r) with a time lag, whereas without DQT On the other hand, if DQT is applied. ¢(7) remains
r.(t) suffers from loss of bandwidth as observed in the neighborhood of € (= 500 cells), maintaining
during the time interval [1.25, 2.5] sec. Fig. 4(b) full utilization of bandwidth and no loss. This is
explains why such a loss of bandwidth occurs with- because the time-varying dynamics of u(r) does not
out DQT. As explained in (33). with static threshold directly affect the dynamics of ¢(r). Rather, the
¢(1) essentially tracks the dynamics of — u(r), con- difference between (1) and w(r — 7,), Vi behaves
sequently hitting both buffer floor and ceiling (see as explained in (32).

Fig. 4(b)). As also shown in Fig. 4(b). the bandwidth Similarly. we compare the performance of FRFC
utilization drops while ¢(r) hits buffer floor, and with /without DQT when ul1) is piecewise constant
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Fig. 5. Control performance when u(t) is piccewise constant (# of VCs =350, 7, € [10,40] ms, B = 5000 cells, K;=10.0. Vi) (a)
trajectories of w(r) (solid curve) and r,(¢) of a VC with 40 ms round-trip delay, (b) wrajectories of ¢(r) and bandwidth utilization.
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with 1 s intervals. The trajectory of w(z) is piotted in
Fig. 5(a) as a solid curve. Exactly same observations
can be made as in the previous scenario. With DQT,
¢{1) remains in the neighborhood of €. which is the
design parameter, maintaining full utilization of
bandwidth and no loss (see Fig. 5(a) and Fig. 5(b)).
As explained in (32), it is observed in the trajectory
of ¢(r) in Fig. 5(b) that the jumps in u(r) affect
¢(t) as impulses so that the effect of jumps vanish
after a certain transient period.

Finally. we consider a dynamic scenario where
V(s arrive and depart. For simplicity we keep
constant at 150 Mbps. For the FRFC with static
threshold, we set ¢, at 35877 cells aiming at ¢, =
500 cells with the given [KO0). This design implies
that if I(r) does not change, ¢(1) will converge to
500 cells. For the FRFC with DQT in (30). € was
fixed at 500 cells. The trajectory of arrival /depar-
ture of VCs is plotted in Fig. 6(a) as a solid curve.
Initially there are 50 VCs, 5 VCs simultancously
arrive at 1, 2 s and 3 VCs depart at 3 5. Also, in Fig.
6(a), r (1) of three representative VCs respectively
arriving at O s. | s and 2 s are shown only for the
case with DQT. It is observed that the rates quickly
converge to the fair share of the available bandwidth
upon arrival and departure of VCs. The trujectories
of ¢(r) and the bandwidth utilization are found in
Fig. 6(b). Again, the FRFC with DQT outpertorms
the FRFC without DQT maintaining no loss. full

utilization of available bandwidth and small queue.
The spikes in ¢(r) found in the case of the FRFC
with DQT is due to the simultaneous arrivals of VCs.
In practice, these spikes can be mitigated by apply-
ing a ceiling to r{1)s at the source point to restrict
the rates, but at the cost of longer transient period.

7. Conclusion

In this paper we have introduced a new gueue-
length-based ABR flow control algorithm (FRFC).
The asymptotic stability of the closed-loop system
and the steady-state throughout, queue length and
fairness have been analyzed for the general case of
multiple connections with diverse round-trip delays.
Further the stability condition and a complete charac-
terization approximation and an useful practical ap-
proximation of the transient behavior have been de-
rived. We have also presented a novel approach to
dynamically adjust the queue threshold in the FRFC
according (o the changes of available bandwidth and
arrivals and departures of connections. Through sim-
ulations, we were able to show that the FRFC with
dynamic queue threshold effectively maintains high
throughput, small cell loss and MAX-MIN fairness
cven in the dynamic environments. The simplicity
and etfectiveness suggests that the FRFC with DQT
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is a promising solution for ABR flow control in
ATM networks. An extended analysis and a compre-
hensive cell-based simulation study for multi-hop
configurations are under way and the results will be
reported in a separate paper.
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