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Abstract—Cellular networks are facing severe traffic overloads
due to the proliferation of smart handheld devices and traffic-
hungry applications. A cost-effective and practical solution is
to offload cellular data through WiFi. Recent theoretical and
experimental studies show that a scheme, referred to as delayed
WiFi offloading, can significantly save the cellular capacity by
delaying users’ data and exploiting mobility and thus increasing
chance of meeting WiFi APs (Access Points). Despite a huge
potential of WiFi offloading in alleviating mobile data explosion,
its success largely depends on the economic incentives provided to
users and operators to deploy and use delayed offloading. In this
paper, we study how much economic benefits can be generated
due to delayed WiFi offloading, by modeling the interaction
between a single provider and users based on a two-stage
sequential game. We first analytically prove that WiFi offloading
is economically beneficial for both the provider and users. Also,
we conduct trace-driven numerical analysis to quantify the
practical gain, where the increase ranges from 21% to 152%
in the providers revenue, and from 73% to 319% in the users
surplus.

Index Terms—WiFi offloading, delayed offloading, economic
analysis, stackelberg game, pricing.

I. INTRODUCTION

MOBILE data traffic is growing enormously, as smart
phones/pads equipped with high computing powers

and diverse applications become popular. Cisco reported that
global mobile data traffic grew 2.3-fold in 2011, more than
doubling for the four consecutive years since 2008 [1]. It was
also forecast there that the total global mobile data traffic will
increase 18-fold between 2011 and 2016, where the average
smartphone is projected to generate 1.3 GB per month in
2015 [1]. To cope with mobile data explosion, upgrading to
4G (e.g., LTE (Long Term Evolution) or WiMax), may be
an immediate solution, but mobile applications are becoming
more diverse with larger data consumption and the number of
smartphone/pad users are also increasing rapidly. Then, users’
traffic demand is expected to exceed the capacity of 4G in the
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near future, and thus cellular operators1 keep seeking other
alternatives to efficiently respond to data explosion [2], [3].

WiFi offloading, where users use WiFi prior to 3G whenever
they have data to transmit/receive, has been receiving a lot of
interest as a practical solution that can be applied without
much financial burden in practice. Network operators as well
as users can easily and quickly install WiFi access points (APs)
with low costs, and in fact many operators worldwide have
already provided WiFi services in hot-spots and residential
areas. Recent papers [4], [5] demonstrate that a huge portion of
cellular traffic can be offloaded to WiFi by letting users delay
their delay-tolerant data (e.g., movie, software downloads,
cloud backup and sync services), and upload/download data
whenever they meet a WiFi AP within a pre-specified delay
deadline. We call this delayed WiFi offloading, and about 60-
80% of cellular traffic can be reduced when 30 mins to 1
hour delay for human mobility [4] and 10 mins of delay for
vehicular mobility [5] are allowed. This remarkable offloading
efficiency is due to users’ mobility enabling themselves to
be under a WiFi coverage during a considerable portion of
their business time. Example usage scenarios include: 1) Alice
records video of a family outing at a park using her cell phone
and wants to archive it in her data storage in the Internet. She
does not need the video immediately until she comes back
home in several hours. 2) Bob will travel this afternoon from
New York to Los Angeles and he just realizes that he can use
some entertainment during the long flight. As he has several
hours before the trip, he schedules to download a couple of
movies on his cell phones.

However, WiFi offloading’s high potential does not always
guarantee that users and providers actually adopt it in practice.
First, users may be reluctant to delay their traffic without eco-
nomic incentives, e.g., discounted service fees. For example,
if a user pays based on an unlimited data plan, users may
have no reason to delay traffic unless WiFi-required services,
e.g., services requiring higher bandwidths, are necessary. Also,
operators may not always welcome delayed offloading service,
since the total cellular traffic to charge may decrease, possibly
leading to its revenue reduction. Thus, it is of significant
importance to formally address the question on the economic
gains of delayed WiFi offloading from the perspective of users,
operators, and regulators, which is the focus of this paper.

In this paper, we consider the interaction between a single
provider and users based on a two-stage sequential game,
where the operator controls the price and users are price-
takers. A variety of control knobs will show different eco-

1We use ‘operator’ and ‘provider’ interchangeably throughout this paper.
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nomic impacts of delayed WiFi offloading. Our major focus
is to understand how and how much users and the provider
obtain the economic incentives by adopting delayed WiFi
offloading and investigate the effect of different pricing and
delay-tolerance. The major features of our model include four
different pricing schemes (flat, volume, two-tier, and conges-
tion) and heterogeneous users in terms of traffic demands and
willingness to pay.

Using the market model mentioned above, we first conduct
analytical studies under flat and volume pricing for the simple
cases when the traffic demand follows a certain distribution
(obtained from known measurement studies), and users are
uniformly distributed among cells. This simplification seems
to be unavoidable for mathematical tractability, yet it helps to
fundamentally understand how the users and the provider be-
come economically beneficial. We formally prove that delayed
WiFi offloading indeed generates the economic incentives for
the users and the provider. To obtain more practical messages
and quantify the gain of delayed WiFi offloading, we use two
traces, each of which tells us the information on cellular data
usage and WiFi connectivity. We extract the parameters needed
by our model from those traces, and obtain numerical results,
from which, we draw the following key messages:

(a) WiFi offloading is economically beneficial for both the
provider and users, where depending on the pricing
schemes and delay tolerance, the increase ranges from
21% to 152% in the provider’s revenue and from 73%
to 319% in the users’ surplus.

(b) Revenue in volume pricing exceeds that in flat pricing.
However, the revenue increasing rate of delayed offload-
ing in flat pricing is higher than that in volume pricing.

(c) Pricing with higher granularity such as two-tier and con-
gestion pricing increases the revenue, compared to flat and
volume pricing, but the gains become smaller as offloading
efficiency increases (i.e., as users delay more traffic).

(d) The revenue gain from on-the-spot to delayed offloading
is similar to that generated by the network upgrade from
3G to 4G.

II. RELATED WORK

There have been several works [4]–[6] on delayed WiFi
offloading. Lee et al. [4] proposed a delayed offloading
framework, where users specify a deadline for each application
or data, and each delay tolerant data is served in a shortest
remaining time first (SRTF) manner through WiFi networks.
If the delay deadline of the data expires, then the data is
transmitted through 3G networks. On real human mobility
traces, it is shown that 80% of cellular traffic can be offloaded
to WiFi networks when 1 hour delay is allowed. Balasubrama-
nian et al. [5] proposed an offloading framework for vehicular
networks, which supports fast switching between 3G and
WiFi, and avoids bursty WiFi losses. They demonstrated that
more than 50% of cellular traffic can be reduced for a delay
tolerance of 100 seconds on vehicular mobility. Hultell et
al. [6] addressed the user experienced performance of delayed
transmission and proposed context-aware caching/prefetching
to provide users immediate services, e.g. web browsing, news,
and streaming. They found that more than 80% of news can be
pre-fetched within 700 seconds, with only 50 WiFi APs per
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Fig. 1. An illustration of the system model. xi(t) and yi(t) are 3G+WiFi
and 3G traffic volumes of user i at time t.

km2 (1.2% spatial coverage) on a random mobility model.
Therefore, WiFi networks are proven to offload large fraction
of cellular data for various mobility conditions and low AP
density, whenever data can tolerate some amount of delay.

Some recent works [7]–[9] devised incentive frameworks
for users to delay their data traffic. Ha et al. [7] proposed
a time-dependent pricing scheme for mobile data, which
incentivizes users to delay their traffic from the higher- to
lower-price time zone. They conducted surveys which revealed
that users are indeed willing to wait 5 minutes (for YouTube
videos) to 48 hours (for software updates). They addressed
that the time-dependent pricing flattens temporal fluctuation of
traffic usage and benefits wireless operators. In [8], [9], Zhuo
et al. proposed an incentive framework for downlink mobile
traffic offloading based on an auction mechanism, where users
send bids, which include the delay it can tolerate and the
discount the user wants to obtain for that delay, and a single
provider buys the delay tolerance from the users. However,
previous studies did not provide how much economic gain
the provider and users can obtain. In this paper, we quantify
the economic gain of delayed offloading based on real-world
traces.

Gao et al. [10] investigated the economics of mobile data
offloading through third-party WiFi or femtocell APs. They
considered a market-based offloading solution, where base
stations (BSs) pay APs for offloading traffic. While they
studied the economic interaction between mobile network
operators and APs as a non-cooperative game, we focus on
the economic interaction between mobile network operators
and subscribers, in this paper.

III. MODEL

We summarize the system model in Fig. 1. We model
users with four attributes, (i) how much money they can pay
(willingness to pay, γ), (ii) how much data they want to use
(traffic demand, φ), (iii) how delay-tolerant each user is (delay
profile, α), and (iv) how they move (WiFi contact probability,
e). We index users by i, time slots by t, and deadlines by
d. Assuming that the single provider knows users’ attributes
and strategies a priori, we model a market model based on
a two-stage sequential game (e.g. Stackelberg game). At the
first stage, the provider decides on the pricing parameters (p)
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TABLE I
SUMMARY OF MAJOR NOTATION

Variable Definition
N and C3g Number of users and Capacity of a BS cell

θ Price sensitivity
edi (t) The WiFi contact probability of user i

at slot t within deadline d
αd
i Portion of traffic of user i with deadline d

xi(t) 3G+WiFi traffic volume of user i at slot t
yi(t) 3G traffic volume of user i at slot t
φi(t) Traffic demand of user i at slot t
wi(t) Temporal preference (weight) of user i at time t
γi(t) Willingness to pay of user i for traffic at time t

(for a fixed pricing scheme, which we will describe later) as
a leader, and at the second stage, each user is a price-taker
as a follower and chooses the 3G+WiFi traffic volume x. Our
analysis and numerical results are carried out based on the
equilibrium of this game. We describe the detailed network,
traffic, and market models in the following subsections.

A. Network and Traffic Model

1) Network model: We consider a network consisting of
cellular base stations (BSs) and WiFi APs, where N users are
served by the cellular provider.2 Users are always guaranteed
to be under the coverage of a cellular BS, but not necessarily
of a WiFi AP. We consider a one-day time scale whose
average analysis over the unit billing cycle, e.g., one month, is
presented. A day is divided into time slots t ∈ {1, 2, . . . , T },
where T is the last index of one day, depending on the duration
of a time slot.3 Let C3g be the capacity (in volume per slot)
provided by a BS.4

During each day, users move among BSs as well as APs. Let
edi (t) be the probability that user i meets any WiFi AP within
deadline d at time slot t. For instance, e1hour

i (13:00) = 0.7
means that user i meets a WiFi AP from 1 p.m. to 2 p.m.
with probability 0.7. The value of edi (t) can be obtained by
analyzing user i’s mobility trace during, say, a month. We
assume that only 3G traffic is charged. Each user has its own
set of accessible, free WiFi APs, e.g., ones in home, office,
or hotspots, deployed by users, users’ companies, providers,
or governments. We ignore the cost from offloaded data since
the cost of accessing the Internet via a WiFi AP connected to
a wired network is considerably lower than that for accessing
the cellular network [11], [12]. According to [12], the per-bit
TCO (total cost of ownership) of WiFi networks are 10% of
the per-bit TCO of 3G networks. If there are many WiFi APs
with poor connection, we may need to apply a threshold policy
(e.g., applying WiFi offloading only when the data rate of WiFi
is greater than 2Mbps) for rate-sensitive applications, where
users do not offload to WiFi networks with poor connection
(i.e., whose data rates are lower than a threshold). The WiFi
contact probability, edi (t), will be changed accordingly.

2) Traffic model: We assume that user i has the average
daily traffic demand Φi, 3G+WiFi traffic vector xi = (xi(t) :
t ∈ T ), and 3G traffic vector yi(xi) = (yi(t) : t ∈ T ), where
xi(t) is the traffic volume of user i at slot t, transferred through

2Throughout this paper, we use the words ‘BS’ and ‘AP’ to refer to a
cellular BS and an WiFi AP, respectively.

3We also use N and T to refer to a set of all users and time slots to abuse
the notation.

4We use ‘3G’ to refer to a cellular network (e.g., W-CDMA, LTE).

either 3G or WiFi, and yi(t) is the traffic volume transferred
through only 3G. The daily traffic demand Φi is temporally
split into φi = (φi(t) : t ∈ T ), where φi(t) is traffic demand
at slot t, and Φi =

∑
t∈T φi(t). The traffic volume of user i at

slot t is constrained by the traffic demand, i.e., xi(t) ≤ φi(t).

We denote wi(t) =
φi(t)
Φi

as temporal preference (weight) of
user i. For example, for a user i’s traffic demand 1 GB, where
users want to send 700 MB at daytime an 300 MB at nighttime
(i.e., just two time slots), φi(day) = 700 and φi(night) = 300,
and wi(day) = 0.7 and wi(night) = 0.3. Users may not be
able to deliver all traffic demand, and the actual transmitted
volume depends on the price and user utility, which we will
describe later. The traffic volume for 3G, yi which is actually
charged, relies on xi as well as each user i’s WiFi contact
probability (mobility) and delay profile, which we define in
the following paragraph.

We introduce a notion of delay profile to model per-user
delay-tolerance of traffic. The delay profile is denoted by α =
(αd

i : i ∈ N, d ∈ {0, 1, ..., D}) such that
∑D

d=0 α
d
i = 1, where

αd
i is the portion of user i’s traffic that allows deadline d, and

D is the maximum allowable deadline across all traffic. For
example, for a user i’s traffic demand 1 GB, if the user has 300
MB, 700 MB, allowing 10 mins and 1 hour, resp., we have
α10m
i = 0.3, α1h

i = 0.7. For a given per-user delay profile, each
user uses only WiFi connections to deliver some data until the
allowable deadline expires, after which the remaining data is
immediately transferred through 3G. In particular, when no
delay is allowed (α0

i = 1), we call this regime on-the-spot
offloading, where a user only uses spontaneous connectivity
of WiFi. Most current smartphones support this by default.

B. Market Model

We start by explaining the economic metrics of the users
and the provider. We assume that the provider and users are
rational and try to maximize revenue and utility.

1) Users and Provider: We model heterogeneous willing-
ness to pay among users over time slots, which we denote by
γi(t) ≥ 0 for user i at time t. For an average user i, γi(t) tends
to be higher when t is in daytime. We first define user i’s utility
at time slot t by γi(t)xi(t)

θ, where the constant θ ∈ (0, 1)
is price-sensitivity. The utility function γi(t)xi(t)

θ is called
an iso-elastic function5 with the property of an increasing
function of traffic volume xi(t) for all i and t, but of a
decreasing marginal payoff. The iso-elastic function for data
traffic is widely used in network economics to represent users’
utility [13]–[17]. Then, user i’s (aggregate) net-utility Ui(xi)
during a day is:

Ui(xi) =
∑
t∈T

γi(t)xi(t)
θ −m

(
p,yi(xi)

)
,

where m(p,yi(xi)) is the daily payment charged by the
provider whose price is p. We abuse the notation and use
p to refer to the whole parameters of a given pricing scheme,
and the function form of m differs across pricing schemes
(see Section III-B2). Recall the notation yi(xi) represents the
dependency of the 3G traffic on 3G+WiFi traffic.

Given the traffic demand φi, WiFi contact probabilities
edi (t), willingness to pay γi = (γi(t) : t ∈ T ), delay profile

5A function u(x) is said to be iso-elastic if for all k > 0, u(kx) =
f(k)u(x) + g(k) for some functions f(k), g(k) > 0.
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αd
i , and a pricing scheme (and its parameters), each user i

chooses x�
i to maximize his/her net-utility,

User : max
xi(t)≤φi(t), ∀t∈T

Ui(xi), (1)

where each user i subscribes to 3G service only if the net-
utility is positive, i.e., Ui(xi) > 0.

Under a given pricing scheme, the provider decides on the
price (more precisely, the parameters of the pricing scheme)
to maximize its expected revenue, R(p):

Provider : max
p∈P

R(p), (2)

where P is the set of all feasible prices such that (i) the
revenue is positive (provider rationality), and (ii) the expected
3G traffic volume at each time and at each BS cell is smaller
than 3G capacity C3g (capacity constraint).

The expected revenue R(p) is the total income minus cost,

R(p) =
∑
i∈N

m
(
p,yi(xi)

)−∑
i∈N

c
(
yi(xi)

)
, (3)

where c(yi) is the network cost to handle the 3G traffic,
which we model by a linearly increasing function, c(yi) =
η
∑

t∈T yi(t), where η is the cost of the unit volume of the
3G traffic. The cost term captures the money for operation and
maintenance including electric power costs as well as customer
complaints due to congestion. The linearly increasing network
cost is commonly used in the analysis of cellular cost [18].
User surplus S is the summation of users’ net-utility and social
welfare W is the summation of user surplus and provider
revenue, or,

S =
∑
i∈N

Ui(xi),

W =
∑

i∈N,t∈T

γi(t)xi(t)
θ −

∑
i∈N

c
(
yi(xi)

)
.

2) Pricing: For a given pricing scheme, the 3G provider
fixes a price parameter which is announced to the users.
We consider four pricing schemes - flat, two-tier, volume,
and congestion - that are popularly studied in literature:
Each pricing scheme has tunable parameters controlled by the
provider: {pf}, {p1t , p2t , y1max}, {pv}, and {pv(t, s)}, which
we elaborate shortly. For a given pricing scheme and its price
parameters p, a user with 3G traffic volume yi pays m

(
p,yi

)
to the provider. Note that if a user does not subscribe or
generate any traffic, the payment is zero, i.e., m

(
p,0
)
= 0.

Flat. The provider offers unlimited service for users who pay
a subscription fee pf .
Two-tier. Multiple price points are provided for several usage
options. For example, AT&T has a pricing plan that offers up
to 200 MB, 2 GB, and 4 GB for $15, $25, and $45 per month,
respectively. In this paper, we consider two price points, where
the provider offers maximum daily traffic volume y1max for
fixed fee p1t and unlimited service for fixed fee p2t , or,

m
(
p,yi

)
=

{
p1t , if 0 <

∑
t∈T yi(t) ≤ y1max.

p2t , if
∑

t∈T yi(t) > y1max.

Volume. A user is charged to pay pv for the unit 3G traffic
volume, or,

m
(
p,yi

)
= pv ·

∑
t∈T

yi(t).

Congestion. We consider a volume-based congestion pricing,
or simply congestion pricing in this paper, where the price for
a unit file size varies with time and location, or,

m
(
p,yi

)
=
∑
t∈T

pv(t, si(t)) · yi(t),

where pv(t, s) is the unit price at time slot t and cell s, and
si(t) is the cell identifier with which user i is associated at t.

We note that in flat and two-tier pricing, users do not
subscribe to the service when the net-utilities are not pos-
itive, which is the major factor determining the provider’s
revenue, whereas in volume and congestion pricing, every
user subscribes and just controls its traffic volume. Two-
tier and congestion pricing schemes are the extensions of
flat (in terms of price granularity) and volume (in terms of
space and time), resp. Tiered pricing in mobile data services
is popularly used recently [1] as the provider can set up
multiple pricing points, while maintaining simplicity in the
pricing structure. Congestion pricing has been considered as a
way of revenue increase in networking services (see e.g., [7],
[19], [20]). In fact, in the usage of cellular networks, it has
been reported that spatial and temporal variation of mobile
data traffic are shown to be remarkable [21], implying high
potential in the increase of the provider’s revenue and better
resource utilization. Despite the high billing complexity, it is
interesting to see its quantified impact in WiFi offloading.

IV. ANALYSIS OF WIFI OFFLOADING MARKET

In Sections IV-B and IV-C, we provide analytical studies of
the economic gain of WiFi offloading. Due to complex inter-
plays among pricing parameters, and more importantly users’
heterogeneity, our analysis is made under several assump-
tions. This simplification seems unavoidable for mathematical
tractability, yet it helps to understand how the users and the
provider become economically beneficial. In Section V, we
quantify economic gains of WiFi offloading in more practical
settings (heterogeneous cells and willingness to pay of users)
as well as complex pricing schemes (two-tier and congestion).

A. Assumptions and Definitions

A1. Homogeneous cells. User associations are uniformly dis-
tributed among cells so that it suffices to consider only
a single BS cell, where the number of users is N̂ =
N/(# of cells). The distribution of users’ traffic demand
in each cell is identical.

A2. Traffic demand distribution. In each cell, the daily traffic
demand Φi follows a random variable Φ which fol-
lows an upper-truncated power-law distribution, given
by: fΦ(x) = x−σ/Z, for 0 ≤ x ≤ Φmax, where σ is
the exponent, Φmax is the maximum value of Φ, and
Z =

Φ1−σ
max

1−σ with 0 < σ < 1.
A3. Willingness to pay and temporal preference. Users are

homogeneous in willingness to pay and temporal prefer-
ence, i.e., γi(t) = γ(t), wi(t) = w(t), ∀i ∈ N, t ∈ T.
In regard to willingness to pay, we let γ(t) = w(t)1−θ .
However user’s traffic demand is heterogeneous as in A2.

A4. Pricing. We consider only flat and volume pricing. Thus,
throughout this section, the pricing parameter p refers to
the flat fee pf and the unit price pv in each pricing, resp.
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In A2, we comment that in recent measurement studies
[21], [22], the traffic volume distribution of cellular devices
is shown to follow an upper-truncated power-law distribution.
Especially, in [21], the adopted pricing policy was flat pricing,
so that the measured traffic usage was not affected by pricing.
Thus, we apply an upper-truncated power-law distribution to
daily traffic demand Φ. In A3, willingness to pay γ(t) at
time t is set, such that at each time slot t (i) one has larger
willingness to pay for larger traffic demand and (ii) utility
generated by traffic demand (γ(t)φ(t)θ) is proportional to the
traffic demand (φ(t) = w(t)Φ). The exponent 1− θ is chosen
to satisfy the condition (ii), where utility of a user with demand
φ is γ(t)φ(t)θ = w(t)1−θ(w(t)Φ)θ = w(t)Φθ . The rationale
behind the condition (ii) is that the expected monetary value
of every bit of a user is equal across time slots (and γ(t)x(t)θ

is proportional to x(t), if x(t) is proportional to φ(t)), but the
value of bit differs by its application type.

Remark 4.1: User heterogeneity only comes from traffic
demand Φ from our assumptions. For notational simplicity,
we omit user subscript i and use subscript Φ to represent the
user variables with traffic demand Φ, e.g., xΦ(t), yΦ(t), etc.

Offloading indicators. We first introduce two indicators to
quantify how much 3G data is offloaded: (i) aggregate 3G
traffic ratio κavg and (ii) peak 3G traffic ratio κpeak.

Definition 4.1 (offloading indicators):

κavg �
∑

t∈T Y (t)∑
t∈T X(t)

, κpeak � maxt∈T Y (t)∑
t∈T X(t)

, (4)

where the transmitted total traffic and 3G traffic over a cell at
time t, X(t) and Y (t)6 are:

X(t) = N̂

∫ Φmax

0

xΦ(t)dFΦ,

Y (t) = N̂

∫ Φmax

0

D∑
d=0

bdΦ(t− d)xΦ(t− d)dFΦ, (5)

and bdΦ(t) = αd
Φ

(
1 − edΦ(t)

)
is the portion of the traffic

generated at time t which is transmitted through 3G at time
t+ d.

It is clear that as users delay more traffic, the aggregate
3G traffic ratio κavg provably decreases, since more traffic
can be offloaded through WiFi. Also, the peak 3G ratio
κpeak decreases as more traffic at peak time is offloaded. In
Section V, we show that both κavg and κpeak decrease as delay
tolerances of users get higher.

Opt-saturated and Opt-unsaturated. We define two notions,
opt-saturated and opt-unsaturated, which characterize the
regimes under which how much traffic is imposed on the
network for the equilibrium price. In general, as traffic de-
mand gets higher compared to the 3G capacity, the network
becomes opt-saturated, and vice versa. The main reason for
introducing those two notions is because the analysis becomes
different depending on the volume of network traffic and the
market behaves differently, and thus, the way of increasing
the revenue and the net-utility can be differently interpreted.
For a formal definition, we first recall that P is the set of all

6When we emphasize that Y (t) (resp. X(t)) depends on a given price p,
Y (t; p) will be used instead of Y (t) (resp. X(t; p)).

feasible prices, defined by provider rationality and capacity
constraint, or,

P � {p | R(p) > 0, Y (t; p) ≤ C3g, ∀t ∈ T } . (6)

Definition 4.2 (Opt-saturated and Opt-unsaturated): Let
p� be an equilibrium price that maximizes the revenue, i.e.,
p� ∈ argmaxp∈P R(p). The network is said to be saturated
at p, if maxt∈T Y (t; p) = C3g. For a unique equilibrium price
p�, the network is said to be opt-saturated if the network is
saturated at p�, and opt-unsaturated otherwise.

Let p0 be the threshold price above which all the feasible
prices lie, i.e., p0 = infp∈P p. For a given price p, R(p) > 0
implies maxt∈T Y (t; p) > 0, since no user subscription or no
traffic results in zero income to the provider. Note that p� is
not necessarily equal to p0. Let A(p) = maxt∈T Y (t; p) be
the total 3G traffic at peak time. Note that A(p) is decreasing
in p. Since A(p) is decreasing in p, a feasible price in P is
greater than or equal to p0.

B. Flat pricing

This subsection considers the impact of offloading when
flat pricing is used. In flat pricing, a user pays a flat fee p
regardless of its 3G traffic usage if it subscribes to the 3G
service. Since there is no incentive to discourage excessive
network traffic, the traffic volume generated by a user equals
to its traffic demand; xΦ(t) = φ(t) for a subscribing user with
total traffic demand Φ, where φ(t) is the traffic demand at slot
t split from Φ.

A user with traffic demand Φ maximizes its net-utility:∑
t∈T

γ(t)xΦ(t)
θ − p =

∑
t∈T

w(t)1−θφ(t)θ − p = Φθ − p, (7)

since γ(t) = w(t)1−θ by A3, xΦ(t) = φ(t), for all t, and
the temporal preference w(t) = φ(t)

Φ . From (3), the provider
maximizes its revenue:

R(p) = N̂p

∫ Φmax

p
1
θ

dFΦ − N̂ηκavg

∫ Φmax

p
1
θ

ΦdFΦ

= N̂

∫ Φmax

p
1
θ

(p− ηκavgΦ)dFΦ, (8)

where p1/θ is the lowest traffic demand of a subscriber (i.e.,
positive net-utility and thus Φθ > p). No users subscribe if the
price is too high, i.e., if p ≥ pmax from (7), where pmax =
Φθ

max. Then, we should have that P ⊂ [0, pmax).
Our main results, Prop. 4.1 and Theorem 4.1, state how the

economic values (e.g. price and revenue) change by offloading.
Prop. 4.1 characterizes (i) R(p) and the feasible price set, and
(ii) the equilibrium prices in the opt-saturated case and (iii)
the opt-unsaturated case. Theorem 4.1 states that offloading
is economically beneficial for the users, the provider, and the
regulator.

Proposition 4.1 (Equilibrium Price in Flat): If the cost co-
efficient η < (κavgΦ

1−θ
max)

−1,

(i) R(p) is unimodal7 over [0, pmax), and the feasible price
set P is non-empty and connected.

7A function f(x) is called unimodal, if for some value v, it is monotoni-
cally increasing for x ≤ v and monotonically decreasing for x ≥ v.
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Fig. 2. Revenue function R(p) in flat and volume pricing. The pmax is the
highest price above which no user subscribes in flat pricing, p̂ is the unique
solution of ∂R(p)

∂p
= 0, and η is the network cost coefficient. The achievable

revenue (at equilibrium) is not always at p̂, since p̂ may not be in the feasible
price set, which is determined by capacity constraint and provider rationality.

(ii) The network is opt-saturated, if R′(p0) < 0, where
the unique equilibrium price p� = p0, where p0 =

Φθ
max

(
1− C3g

κpeakN̂E[Φ]

) θ
2−σ

.

(iii) The network is opt-unsaturated, if R′(p0) > 0, where
the unique equilibrium price p� = p�(κavg) is such that
∂R(p)
∂p

∣∣
p=p� = 0, and ∂p�(κavg)

∂κavg
> 0.

Theorem 4.1 (Economic Gain from Offloading in Flat):
If η < (κavgΦ

1−θ
max)

−1, the net-utilities of all subscribers and
the provider’s revenue at equilibrium increases (thus the user
surplus and the social-welfare increase), as (i) κpeak decreases
in the opt-saturated case, and (ii) as κavg decreases in the
opt-unsaturated case.

The proof is presented in the Appendix. Here, we briefly
interpret Prop. 4.1 and Theorem 4.1. First, clearly if the net-
work cost is too high, the provider cannot achieve any positive
revenue, where the condition of η < (κavgΦ

1−θ
max)

−1 guarantees
the existence of prices under which the revenue is positive.
This condition is relaxed as more offloading occurs (i.e.,
κavg decreases), resulting in less restricted business condition
with positive revenue from the provider’s perspective. Second,
every feasible price is larger than or equal to the threshold
price p0. Also, R(p) is unimodal and P is connected. Thus, at
the threshold price, if R′(p0) < 0, then R(p0) ≥ R(p) for all
p ∈ P (see Fig. 2(a)). Thus, the equilibrium price is unique,
and p� = p0, where p0 is characterized as in Prop. 4.1(ii).
Also, the network is opt-saturated if R′(p0) < 0,, because the
peak traffic volume A(p0) = C3g (otherwise, there exists a
smaller feasible price than p0). Now, if R′(p0) > 0, the equi-
librium price p� is such that R′(p�) = 0, as in Prop. 4.1(iii).
Again, this case makes the network opt-unsaturated because
A(p�) < A(p0) (due to decreasing property of A(p) in p) and
A(p0) ≤ C3g.

We now explain the relationship between traffic demand
and opt-saturatedness. The amount of total traffic demand of
users affects the revenue change rate at the traffic-maximizing
price, R′(p0), where 3G capacity and offloading indicators
are fixed. If traffic demand is high enough, when the provider
can reduce its flat fee (by offloading or network upgrade),
revenue increases even with the reduced price, i.e., R′(p0) <
0, since increase of subscribers exceeds price reduction. In
other words, when R′(p0) < 0, if the provider increases its
flat price from p0, the provider revenue decreases, since the
revenue reduction from the reduced number of subscribers is
greater than the revenue increase from the increased price.

If traffic demand is not significantly high, subscription ratio
does not increase drastically, so that revenue decreases, i.e.,
R′(p0) > 0, and at the optimal price, the 3G capacity is not
fully utilized by the users, i.e., if the provider increases its
flat price from p0, revenue increase from the increased price
is greater than revenue reduction from the reduced number of
subscribers, and p0 is not the price at the equilibrium.

Using the results of Prop. 4.1, Theorem 4.1 states that
offloading is economically beneficial from the perspective of
the users, the provider, and the regulator, where the mecha-
nisms behind the increase in the revenue are different in the
opt-saturated and opt-unsaturated cases. In the opt-saturated
case, as more 3G traffic is offloaded through WiFi at peak
time, i.e., κpeak decreases, the provider turns out to have extra
3G capacity. Then, the provider attracts more subscribers by
lowering its flat fee, in order to utilize the extra capacity.
As the increase in the number of subscribers exceeds the
reduced price, the revenue increases. Indeed, from Prop. 4.1(ii)
the equilibrium price decreases as κpeak decreases. The net-
utility increases for all subscribers by price reduction since
a subscribing user in flat pricing always generate all the
traffic demand. In the opt-unsaturated case, the number of
subscribers does not increase drastically even if the provider
decreases its flat fee, so that the provider’s income does not
increase. However, the network cost decreases substantially as
the 3G traffic decreases, i.e., κavg decreases, and the revenue
increases. Since the equilibrium price still decreases, as κavg

decreases from Prop. 4.1(iii), the net-utility increases for all
subscribers by the same argument as in the opt-saturated case.

C. Volume pricing

In volume pricing, user payment is proportional to its 3G
traffic volume. For a given unit price, a user chooses the
amount of traffic that maximizes its net-utility. In this subsec-
tion, for tractability, we focus more on the average analysis
by assuming that per-user and -time dependence of delay
profile and WiFi connection probability are homogeneous, i.e.,
αd
Φ = αd, edΦ(t) = ed for all t and all users. Then, by (5), for

a user with traffic demand Φ,∑
t∈T

yΦ(t)=
∑
t∈T

(
xΦ(t)

D∑
d=0

αd
(
1− ed

))
=κavg

∑
t∈T

xΦ(t), (9)

where note that κavg =
∑D

d=0 α
d
(
1 − ed

)
by the definition

in (4). A user with traffic demand Φ pays p
∑

t∈T yΦ(t) and
maximizes the following net-utility (for a given price p):∑

t∈T

γ(t)xΦ(t)
θ − p

∑
t∈T

yΦ(t)

=
∑
t∈T

w(t)1−θxΦ(t)
θ − pκavg

∑
t∈T

xΦ(t) (10)

using γ(t) = w(t)1−θ and (9). Since users pay in proportion
to the volume of 3G traffic, a notion of payment per unit (3G
+ WiFi) traffic is useful, given by:

p
∑

t∈T yΦ(t)∑
t∈T xΦ(t)

=
pκavg

∑
t∈T xΦ(t)∑

t∈T xΦ(t)
= pκavg,

where without offloading, i.e., κavg = 1, payment per unit
traffic is just p. From (3), the provider maximizes its revenue

R(p) = N̂(p− η)

∫ Φmax

0

∑
t∈T

yΦ(t)dFΦ. (11)
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Since R(p) ≤ 0 for p ≤ η, we should have P ⊂ (η,∞). It
is clear that as the payment per unit traffic pκavg decreases,
the traffic which can be delivered per dollar increases. We will
show that the payment per unit traffic pκavg decreases, as more
offloading through WiFi occurs.

Similarly in flat pricing, we present our main results
by Prop. 4.2 and Theorem 4.2. Prop. 4.2 characterizes the
equilibrium prices in opt-saturated and opt-unsaturated cases.
Theorem 4.2 states that offloading is economically beneficial
for the users, the provider, and the regulator.

Proposition 4.2 (Equilibrium Price in Volume):

(i) R(p) is unimodal for p ≥ η and the feasible price set P
is non-empty and connected.

(ii) The network is opt-saturated, if R′(p0) < 0, where
the unique equilibrium price is p� = p0 where p0 =

p0(κpeak) is the threshold price, and ∂p0(κpeak)
∂κpeak

> 0.

(iii) The network is opt-unsaturated, if R′(p0) > 0, where
the unique equilibrium price p� = p�(κavg) is such that
∂R(p)
∂p

∣∣
p=p� = 0, and ∂(p�(κavg)κavg)

∂κavg
> 0.

Theorem 4.2 (Economic Gain from Offloading in Volume):
The net-utilities for all users and the provider’s revenue
increase (thus the user surplus and the social-welfare
increase), (i) as κpeak decreases, in the opt-saturated case, and
(ii) as κavg decreases, in the opt-unsaturated case.

The proof is presented in the Appendix. Here, we briefly
interpret Prop. 4.2 and Theorem 4.2. Note that different from
in flat pricing, in volume pricing, P �= ∅ for any network
cost coefficient η and all users subscribe to the service.
The revenue function is unimodal (see Fig. 2(b)), so that
our analysis becomes significantly convenient, and as in flat
pricing, R′(p0), determines whether the threshold price p0 is
the price at equilibrium or not. The relationship between the
traffic demand and opt-saturatedness is analogous to that in
flat pricing, where basically a high traffic demand induces
opt-saturatedness. We also see that as the offloaded traffic
increases, the payment per unit traffic decreases in both opt-
saturated and opt-unsaturated cases.

In the opt-saturated case, we experience the revenue in-
crease similarly to flat pricing. In this case, offloading gen-
erates extra 3G capacity, thereby the provider attracts more
traffic by reducing the unit price to get higher revenue.
Note that in flat, higher revenue is due to more subscribing
users by reducing the flat fee. Indeed, from Prop. 4.2(ii), the
equilibrium price p� decreases as κpeak decreases. However,
in the opt-unsaturated case, flat and volume pricing behave
differently. Unlike the flat pricing, as 3G traffic is reduced by
offloading, the provider’s income decreases in volume pricing.
Then, the provider increases the price to compensate for the
revenue decrease, which, however, does not bring decrease
in income for the following reasons: even though the price
p is increased, 3G+WiFi traffic is not reduced as long as
the payment per unit traffic pκavg is not increased. Thus, the
total income pκavg×traffic (3G+WiFi) remains the same if the
pκavg is the same. Since cost is proportional to 3G traffic,
reduced 3G traffic leads to cost reduction which is the main
factor to the revenue increase. The payment per unit traffic
at equilibrium p�(κavg)κavg decreases as κavg decreases from
Prop. 4.2(iii).
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Fig. 3. The number of data calls on average and in office/residential cells.

V. TRACE-DRIVEN NUMERICAL ANALYSIS

A. Setup

In this subsection, we describe the setup for our trace-driven
numerical analysis, such as the real traces and the parameter
values. The duration of a time slot is set to be an hour, i.e.,
T = 24. The number of BS cells is 31 and the average number
of users per cell is 1000,8 thus total 31000 users. The choice of
31 cells is due to a real trace which will be explained later. We
test two cellular capacities, 8 Mbps for 3G and 32 Mbps for
4G, where the 4G capacity is projected to be about four times
the 3G capacity [25].9 We set the price sensitivity θ = 0.5
and the cost coefficient η = 0.1. We use two real traces to get
the statistics of users’ traffic and WiFi connection probability.

Trace 1 (3G traffic usage). The first trace is from a major
cellular provider in Korea and includes the information on
the number of high speed downlink/uplink packet access
(HSDPA/HSUPA) calls, recorded every hour, in each of the 31
BSs in a day. Fig. 3 shows the average number of calls per hour
over 31 BSs, and that in an office and a residential cell, where
we regard a cell as an office cell if the call arrival at daytime
(8:00 a.m. - 8:00 p.m.) exceeds that at night, and a residential
cell otherwise. There exist 15 office and 16 residential cells.
Assuming that the average data consumption per each call is
similar over cells and time slots, we regard the number of data
calls as the amount of traffic demand at each cell and slot.

Trace 2 (WiFi connection). The second trace is measured
by 93 iPhone users from an iPhone user community in Korea,
who volunteer and record their time-varying WiFi connectivity
and locations, periodically scanned and recorded at every 3
minutes for two weeks [4]. Occupations of participants were
diverse, e.g. students, daytime workers, and freelancers, as
well as residential areas were, where half of participants lived
in Seoul. We only recorded APs to which users can transmit
data by sending a ping packet to our server. i.e., the trace
only captures accessible WiFi APs that are open or users have
authority.

We now present the main parameters based on the traces
1, 2 and the measurement results revealed in other research.

(a) Traffic demand (φi) and willingness to pay (γi(t)): Most
measurements on mobile data [21], [22], [26], [27] showed
that the user traffic volume follows an upper-truncated power-
law distribution as used in the analysis of Section IV. Thus, we
use an upper-truncated power-law distribution10 with exponent
σ = 0.57 (which is observed in [22]), as the distribution of
total daily traffic demand Φi by scaling the average, so that the
per-month average ranges from 93 MB to 5.2 GB. Note that

8This is a typical number of users in a macro BS. For example, Sprint has
66,000 BSs and 55 million subscribers at the end of 2011 [23], [24].

9Yet, we still use the notation C3g for notational simplicity.
10fΦ(x) = x−σ/Z, for 0 ≤ x ≤ Φmax, where Φmax is the maximum

value of Φ and Z =
Φ1−σ

max
1−σ

.
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Fig. 4. The CCDF of WiFi contact probability of user i at slot t for various
deadlines d, ei,d(t). The mean for each distribution is 0.56, 0.71, 0.80, 0.88,
and 0.92, and the median for each distribution is 0.62, 0.87, 0.97, 1, and 1.

in [1], 1.3 GB/month is projected in year 2015. The temporal
preference (wi(t) = φi(t)/Φi) of users follows the average
temporal usage pattern in trace 1. Users’ willingness to pay
is set to include some randomness across users, and its time-
dependence is set to be proportional to temporal preference,
i.e., γi(t) = νiw(t)

1−θ , where νi is uniformly distributed over
(0, 1).

(b) WiFi connection probability (edi (t)): We use the trace 2
to obtain the values of (edi (t) : i ∈ N, t ∈ T ). Since trace
2 includes only 93 users, we repeatedly use their individual
traces to generate N users’ data, i.e., about N/93 users have
the same edi (t). We refer the readers to [4] to know how
often users meet WiFi in the experiment. To show the average
pattern of edi (t), for each deadline d, we draw the CCDF of
WiFi contact probability in Fig. 4. For 10 mins and 6 hours
deadline, the average WiFi contact probabilities are 0.7 and
0.88, and the medians are 0.87 and 0.97, respectively.

(c) BS association (si(t)): The information on cell-level
mobility is important in our model due to the (i) cell-level
capacity constraint C3g (which requires to track the number
of users in a cell) and (ii) congestion pricing (which applies
difference prices depending on spatio-temporal information).
Unfortunately, trace 1 does not include users’ cell-level mo-
bility mainly because of privacy, thus we combine trace 1
with the statistics from [21] that has the distribution on the
number of distinct BSs visited by a user per day. At the first
time slot, we assign user associations so that the number of
users in each cell at the first time slot is proportional to the
traffic volume of the cell at that slot (e.g. 8 a.m.) in trace 1.
We assign handover probabilities (from the associated cell to
other cells) to users so that (i) the expected number of users
in each cell at the next time slot is proportional to the traffic
volume in trace 1 and (ii) the number of visited BSs follows
the statistics in [21], assuming that handovers are uniformly
distributed among time slots.

(d) Delay profile (αd
i ): To model the delay profile of users,

we use various scenarios, such as no-deadline, short, medium,
and long, where each scenario consists of four different classes
(Video, Data, P2P, and Audio), as classified by Cisco [1]. The
details are described in Table II. We consider the economic
impact of WiFi offloading for two cases in our numerical
results: (i) all users are uniformly given a scenario, e.g.,
medium, and (ii) there is a fixed portion of users for each
scenario.

B. Results

Our numerical results quantify the benefits of delayed
WiFi offloading in various aspects. We present our results by
summarizing the key observations.

TABLE II
TRAFFIC CLASSIFICATION PROJECTED IN YEAR 2015 FROM CISCO [1]
AND ASSIGNED DEADLINES FOR EACH TRAFFIC CLASS. SC: SCENARIO

Video Data P2P Audio (VoIP) Total
Ratio 66.4 % 20.9 % 6.1 % 6.6 % 100 %

SC:zero 0 sec. 0 sec. 0 sec. 0 sec. -
SC:short 10 min. 30 min. 10 min. 0 sec. -

SC:medium 30 min. 1 hour 30 min. 0 sec. -
SC:long 2 hours 6 hours 2 hours 0 sec. -
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Fig. 5. Flat and volume pricing: revenue for various delay profiles in
Table II and traffic demand, with different cellular capacities, where users
experience a single scenario in Table II. Delay profiles are set to be the
same across all users. Offloading indicators are decreasing as delay tolerance
gets higher (from short to long), where κavg = .44, .28, .23, .15 and
κpeak = .0044, .0026, .0020, .0013 for zero, short, medium, and long
scenarios. The numbers (-x) represent the increase of revenue by (a) delayed
offloading or (b) network upgrade (from 3G to 4G). Opt-saturatedness is
determined by the traffic demand and cellular capacity, where the dotted line
shows the threshold in the on-the-spot offloading over flat pricing.

1) Revenue in volume pricing exceeds that in flat pricing by
applying delayed WiFi offloading, but the revenue increase is
higher in flat pricing than volume pricing: Fig. 5(a) depicts
the revenue of flat and volume for various traffic demand
and delay profiles, where users experience a single scenario.
Revenue in volume exceeds that in flat in all cases, because
in flat, a subscriber with high traffic demand generates heavy
traffic and dominates the network resources without paying
more fees to the provider, whereas in volume, user payment
is proportional to traffic volume, so that if a subscriber
generates heavy traffic, the payment is high. This imposes
negative externality (i.e., congestion) to the provider and
reduces provider revenue. However, the revenue increase of
delayed offloading, which is the amount of increased revenue
over revenue in the on-the-spot offloading, is higher in flat. The
revenue increase in flat pricing is about 61-152%, whereas the
revenue increase in volume pricing is about 21-43%, when the
average traffic demand is 43.3 MB/day (1.5 GB/month). This
is because in flat pricing, 3G traffic reduction does not affect
the provider’s income, whereas, in volume pricing, 3G traffic
reduction decreases the income. We also depict the revenue
of flat and volume pricing when users have a mixture of four
scenarios of delay deadline in Fig. 6. We find that as user
portion with high delay tolerance increases, revenue increases
in both flat and volume pricing. From this result, we find that
even when some portion of users are delay-tolerant, the single
provider can increase its revenue and all subscribers, including
non-delay-tolerant users, benefit from the reduced price.

2) The revenue gain from on-the-spot to delayed offloading
is similar to that generated from upgrading the network
capacity by a factor of 4: Fig. 5 depicts revenue of flat
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Fig. 7. Change of flat price and subscription ratio in flat pricing, and payment
per unit traffic in volume pricing. The average traffic demand is 43.3 MB/day
(1.5GB/month) and 3G capacity is 3.6 GB/hour (opt-saturated).

and volume pricing for various traffic demand, with different
cellular capacities. As the traffic demand increases, the net-
work gets congested and eventually becomes opt-saturated. If
a provider upgrades the cellular network capacity by a factor
of 4, the revenue increases by 115% in flat and 30% in volume,
respectively, when the traffic demand is 43.3 MB/day. We
recall that the revenue gain of offloading in flat and volume
pricing is 61-152% and 21-43%, which is as significant as
the revenue gain from upgrading network capacity by a factor
of 4. Thus, if traffic demand is high compared to capacity,
adopting delayed offloading can be a good solution to increase
revenue, where the network upgrade induces huge installation
costs. Note that when traffic demand is not high (i.e., opt-
unsaturated), the revenue increase is small both in network
upgrade and delayed offloading.

3) As more traffic is offloaded, the flat price decreases and
subscription ratio increases simultaneously in flat pricing,
and payment per unit traffic decreases in volume pricing:
As shown in Fig. 7, the flat fee decreases by 15-44% and
subscription ratio increases accordingly in flat pricing, and
payment per unit traffic decreases by 28-59% in volume
pricing, when the average traffic demand is 1.5 GB/month
(opt-saturated). In the opt-unsaturated case, price reduction is
not drastic both in flat and volume pricing, since the income
does not increase by price reduction due to low traffic demand.
The reduction in flat price and payment per unit traffic induces
increase in user surplus, as shown in Fig. 8.

4) Two-tier and congestion pricing increase the revenue,
compared to flat and volume pricing, but such gains become
smaller, as more traffic is offloaded: Fig. 8 shows the change
of revenue, surplus, and welfare in four pricing schemes. It is
intuitive that as pricing granularity increases in terms of price
(from flat to tiered) or space/time (from volume to congestion),
revenue increases, because the provider has more degree of
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Fig. 8. The revenue, surplus, and welfare in flat, tiered, volume and
congestion pricing. The number (-x) above each bar represents the increase
compared to the revenue in (a) flat or (b) volume pricing. The average traffic
demand is set to be 43.3MB/day (1.5GB/month) which is projected in year
2015 by Cisco and the 3G capacity is 3.6GB/hour.
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Fig. 10. Effect of delay disutility on (a) the revenue gain and (b) the fraction
of delayed offloading users.

freedom to control the market. However, the rate of increase
diminishes as more traffic is offloaded through WiFi. Using
the traffic demand in 2015, the revenue in two-tier pricing is
greater than that in flat pricing by 94% and 25% in on-the-spot
and delayed offloading, resp., where the revenue in congestion
pricing is greater than that in volume pricing by 12% and
7% in on-the-spot and delayed offloading, resp. We also find
that delayed offloading reduces spatiotemporal imbalance by
dispersing traffic to other time and locations, so that the effect
of space/time-varying price is reduced. To see this, we depict
the variance of normalized cell load at each time in Fig. 9,
where the variance decreases as more traffic is offloaded. As
a result, the time-flattening effect and revenue increase of
congestion pricing decrease, since congestion pricing performs
better when temporal imbalance in traffic demand is severe.

5) As users’ utilities are decreased by the delay disutility,
the revenue gain from delayed offloading decreases, but the
decrease in revenue gain is less severe when users have
higher delay tolerance: Here, we try to understand the effect
of delay disutility on revenue gain by applying the disutility
factor in user utility. We consider the volume pricing and
assume that utilities of users who perform delayed offloading
are decreased by the disutility factor (%) from the original
utility without delayed offloading. A user can decide whether
it adopts delayed offloading or not, based on the net-utility,
i.e., a user adopts delayed offloading only if the price discount
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Fig. 11. Change of revenue in flat and volume pricing when the provider
overestimates willingness to pay of users. The average traffic demand is
43.3 MB/day (1.5GB/month) and 3G capacity is 8Mbps (3.6 GB/hour) (opt-
saturated).

is higher than the amount of disutility, where the price discount
is only given to users who adopt delayed offloading. We depict
the revenue gain and the fraction of users who adopt delayed
offloading, in Fig. 10. Both the revenue gain and the delayed
offloading ratio decrease as the disutility factor increases. We
still obtain more than 50% of the revenue gain when users
have less than 15% and 10% of disutility factor, for the long
and short delay profiles, respectively. Note that users will
experience less disutilty for shorter delay. When the disutility
factor is higher than 40%, no user decides to use delayed
offloading, so that the revenue gain is zero.

6) If the provider overestimates willingness to pay of users,
the provider revenue decreases, but the decreasing rate
becomes smaller with delayed offloading: In all the above
simulation results, we assume that the provider has complete
information of user profiles. But there can be misinformation
of user profiles in practical settings. In this section, we see the
effect of misinformation in willingness to pay (i.e., user utility)
on the provider revenue. We depict the provider revenue in flat
and volume pricing in Fig. 11 when the provider overestimates
willingness to pay of users. We find that as the error in
willingness to pay increases, the provider revenue decreases
in both flat and volume pricing as the provider chooses a
price that is higher than the price at the equilibrium point
with complete information, but the decreasing rate is higher
in flat than volume pricing. In other words, volume pricing is
less sensitive to misinformation in willingness to pay than flat
pricing. Also, we find that as the delay deadline gets larger,
the negative effect of misinformation in willingness to pay on
the provider revenue becomes less severe (especially in flat
pricing).

VI. CONCLUDING REMARK AND FUTURE WORK

In this paper, we model a game-theoretic framework to
study the economic aspects of WiFi offloading, where we drew
the following messages from the analytical and numerical
studies: (a) WiFi offloading is economically beneficial for both
the provider and users, where the increase ranges from 21%
to 152% in the provider revenue and from 73% to 319% in
the users’ surplus. (b) The revenue gain from on-the-spot to
delayed offloading is similar to that generated by the network
upgrade from 3G to 4G. (c) The revenue increase of complex
pricing schemes (such as two-tier from flat, and congestion
from volume), becomes smaller for higher offloading chances,
which is true as of now and in the future, when more WiFi
APs are expected to be deployed.

Another well-known benefit from WiFi offloading is trans-
mission energy saving, which is shown in [4], [28]. It is shown
in [4] that 50-60% of transmission energy can be reduced for
1-hour delay, which in turn increases users’ battery lifetime.
Even if we do not consider this benefit in this paper, it is
obvious that a user benefits from the increased battery lifetime.

There are a few limitations in our work. Our results rely
on the assumption that network traffic has a degree of delay
tolerance and users can tolerate some amount of delay, where
delay depends on the class of traffic (even if we provide the
numerical results of a mixture of users with different delay
scenarios, including ones requiring no delay deadline). Also,
some economic parameter values (e.g., willingness to pay and
price sensitivity) are arbitrarily chosen from (i) the lack of
appropriate measurement data (e.g., cellular providers do not
make public the payment of individual users mainly from
the privacy of users) and (ii) the difficulty in quantification
of parameters (especially for economic parameters). Thus,
our results can sometimes be regarded as an upper-bound on
the economic benefits of WiFi offloading. A simple way of
reflecting user dissatisfaction from delay would be to design a
net-utility function which jointly captures the happiness by
data transmission and the disutility by delay such as [8],
[9], which we leave as a future work. We assume perfect
information of user profiles (e.g., willingness to pay, WiFi
connection probability), but there can be misinformation of
user profiles (as in our simulation result 6) in Section V-B
with misinformation in willingness to pay). Thus, we regard a
Bayesian game model in which information of other players
is incomplete, as a future work. Another future work is to
consider multiple providers, where they have different plans to
overcome the mobile data explosion (e.g. delayed offloading,
network upgrade, or complex pricing).

APPENDIX

A. Proof of Proposition 4.1

Step 1: Unimodality of R(p). In flat pricing, the total 3G
traffic volume of a 3G-subscribing user is equal to its total
traffic demand, i.e.,

∑
t∈T xΦ(t) =

∑
t∈T φ(t) = Φ, and the

user enters the market only when Φ > p
1
θ , from (7). Based on

it, we first express
∑

x∈T X(t) and A(p) using the parameters
of the traffic demand distribution. We first have:∑
t∈T

X(t) = N̂

∫ Φmax

p
1
θ

ΦfΦ(Φ)dΦ = N̂
Φ2−σ

max − p
2−σ
θ

Z(2− σ)
,

where fΦ(Φ) =
Φ−σ

Z by A2 and recall that Z =
Φ1−σ

max

1−σ . Then,
by (4),

A(p) = κpeak

∑
t∈T

X(t) = κpeakN̂
Φ2−σ

max − p
2−σ
θ

Z(2− σ)
. (12)

From (8), the revenue R(p) is expressed as:

R(p) = N̂p

(
1− p

1−σ
θ

Z(1− σ)

)
−

ηκavgN̂
(
Φ2−σ

max − p
2−σ
θ

)
Z(2− σ)

.

Then, the first derivative of R(p) is

∂R(p)

∂p
= N̂

(
1−

(
1 + 1−σ

θ

)
p

1−σ
θ

Z(1− σ)
+

ηκavgp
2−σ
θ −1

Zθ

)
. (13)
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We can easily check that R′(0) > 0 and R′(pmax) < 0
under the condition that η < (κavgΦ

1−θ
max)

−1 and from the
intermediate value theorem, there exists a price p̂ ∈ (0, pmax)
such that R′(p̂) = 0. Now, we show that R(p) is unimodal,
thereby p̂ is unique. The second derivative of R(p) is

∂2R(p)

∂p2
= N̂p

1−σ−θ
θ

ηκavgp
1−θ
θ (2− θ − σ)−(1 + θ − σ)

Zθ2
. (14)

We have ∂2R(p)/∂p2 < 0 (concave) over [0, p̄), and
∂2R(p)/∂p2 > 0 (convex) over (p̄, pmax), where p̄ =(

1+θ−σ
ηκavg(2−θ−σ)

) θ
1−θ

, such that ∂2R(p)/∂p2 = 0. Since

R′(pmax) < 0 and R′(p) is increasing over (p̄, pmax) from
the convexity, R′(p) < 0 over (p̄, pmax), and R′(p̄) < 0.
Thus, p̂ /∈ [p̄, pmax). Since R′(0) > 0, R′(p̄) < 0, and R′(p)
is decreasing over [0, p̄) from the concavity, the solution of
R′(p̂) = 0, p̂ is unique and p̂ < p̄. Also, R(p) is unimodal
over [0, pmax) since R′(p) has only one sign change.

Step 2: Characterization of P . By definition of the set of fea-
sible prices with provider rationality and capacity constraint,
P = E ∩ F where E = {p | A(p) ≤ C3g} and F =
{p | R(p) > 0}. From (12), A(p) is decreasing in p. Thus,
there exists some pmin, such that A(p) ≤ C3g ⇔ p ≥ pmin.
Therefore, E = {p | p ≥ pmin} which is a connected set. The
pmin is characterized as:

pmin =

⎧⎨
⎩

0 if A(0) < C3g(
Φ2−σ

max − C3gZ(2−σ)

N̂κpeak

) θ
2−σ

if A(0) ≥ C3g

Note that pmin < Φθ
max since 0 < σ < 1. Regarding F ,

we first recall that p < pmax = Φθ
max since R(p) = 0 for

p ≥ Φθ
max (i.e., there exists no subscriber). Since R(p) is

unimodal over [0, pmax), F = {p | R(p) > 0} is connected.
There exists a unique pz < p̂ such that R(pz) = 0, since
R(0) ≤ 0, R(p̂) > 0 and R(p) is strictly increasing (R′(p) >
0) in 0 ≤ p ≤ p̂. Hence F = (pz , pmax) for pz < pmax such
that R(pz) = 0. Since both E and F are connected, P = E∩F
is connected. Note that p0 = inf{p|R(p) > 0, A(p) ≤ C3g} =
max{pmin, pz}. If R(p0) > 0, p0 ∈ F and P = [p0, pmax). If
R(p0) = 0, then, p0 /∈ F . Thus, p0 = pz and P = (p0, pmax).
From Steps 1 and 2, the result (i) holds.

Step 3: Proof of (ii). If R′(p0) < 0, then p̂ < p0, which means
p̂ is not in P , i.e, p̂ cannot be the equilibrium price. Since
R(pmax) = 0 and R′(p) < 0 for p0 ≤ p ≤ pmax from
unimodality of R(p) we have R(p0) > 0; P = [p0 pmax).
Therefore p0 = pmin such that A(pmin) = C3g and

p0 =

(
Φ2−σ

max − C3gZ(2− σ)

κpeakN̂

) θ
2−σ

= Φθ
max

(
1− C3g

κpeakN̂E[Φ]

) θ
2−σ

,

where E[Φ] = 1−σ
2−σΦmax. Since R(p) is decreasing over P ,

R(p) is maximum at p0, that is, p0 is the unique equilibrium
price. Since A(p0) = C3g, the network is opt-saturated.

Step 4: Proof of (iii). If R′(p0) > 0, then p̂ > p0 since R(p)
is unimodal. From (12), A(p) is a decreasing function of p.
Hence A(p̂) < A(p0) ≤ C3g; the network is opt-unsaturated.

q  = 1

q  = 0.5

q  = 1

q  = 0.5

A(p)
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R(p)

price

price

1k
0.5k

avg 0.5
avg 1
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Fig. 12. Change of feasible price set, P = E ∩F for κavg = 1, κpeak = 1
and κavg = 0.5, κpeak = 0.5 in flat pricing.

We will show that the derivative ∂p̂
∂κavg

is positive. From (13)
and taking a derivative of κavg w.r.t. p̂,

κavg =
1+θ−σ
1−σ p̂

1−σ
θ − Zθ

ηp̂
2−σ
θ −1

,
∂κavg

∂p̂
=

p̂
−2+σ

θ

η(1 − σ)
g(p̂

1−σ
θ ),

where g(z) = (2 − θ − σ)Φ1−σ
max − (1−θ)(1+θ−σ)

θ z. To show
∂p̂

∂κavg
> 0, it suffices to show ∂κavg

∂p̂ > 0, for which we show

g(p̂
1−σ
θ ) > 0. From (13), we have

p̂
1−σ
θ =

θΦ1−σ
max

(1 + θ − σ)− ηκavg(1− σ)p̂
1−θ
θ

<
θΦ1−σ

max

(1 + θ − σ)
(
1− 1−σ

2−θ−σ

)
=

θ(2− θ − σ)

(1− θ)(1 + θ − σ)
Φ1−σ

max ,

since p̂ < p̄, where p̄ =
(

1+θ−σ
ηκavg(2−θ−σ)

) θ
1−θ

such that

∂2R(p)/∂p2 = 0 from (14). Let ρ = θ(2−θ−σ)
(1−θ)(1+θ−σ)Φ

1−σ
max.

Since g(z) is decreasing as z is increasing and g(ρ) = 0,
g(p̂

1−σ
θ ) > g(ρ) = 0 since θ ∈ (0, 1) and σ ∈ (0, 1). Thus,

∂κavg

∂p̂ > 0 and ∂p̂
∂κavg

is also positive.

B. Proof of Theorem 4.1

(i) Opt-saturated. Recall that net-utility of a subscriber with
Φ is Φθ−p, where Φ =

∑
t∈T φ(t). Hence, the net-utility of a

subscriber increases as p� decreases from Proposition 4.1(ii).
To study the impact of κpeak, we regard κpeak as a vari-

able, not a constant. To show that R(p�) increases as κpeak

decreases, we will show that ∂R(p�)
∂κpeak

< 0. The first derivative
of R(p�) with respect to κpeak is,

∂R(p�)

∂κpeak
=

∂R(p�)

∂p�
∂p�

∂κpeak
.

From Proposition 4.1(ii), p� is an increasing function in κpeak.
Therefore, it suffices to show that ∂R(p�)

∂p� < 0, which is proved
in the proof of Proposition 4.1(ii).

(ii) Opt-unsaturated. Using a similar argument in the proof
of Theorem 4.1(i), the net-utility of a user and user surplus
increase as κavg decreases, since the flat fee decreases as κavg

decreases from Proposition 4.1(iii). In terms of the provider’s
revenue, we use the notations R(p, κavg) and Pκavg to explicitly
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express the dependence of R(p) and P on κavg, because
our interest lies in examining how R(p) and P change with
varying κavg. First, R(p, κavg) increases as κavg decreases for
p ∈ [0, pmax], since differentiating by κavg yields:

∂R(p, κavg)

∂κavg
= −

ηN̂
(
Φ2−σ

max − p
2−σ
θ

)
Z(2− σ)

< 0. (15)

Second, we will show that the set Pκavg gets “enlarged” as κavg

decreases, for which it suffices to show that revenue increases.
Pκavg = E ∩ Fκavg , where E = {p | p ≥ pmin} and Fκavg =
{p | R(p, κavg) > 0}. Note that E does not depend on κavg,
but on κpeak. Since R(p, κavg) is decreasing in κavg, Fκavg is
enlarged as κavg decreases. Therefore, Pκavg is enlarged (or
remains the same) and maxp∈Pκavg

R(p, κavg) increases as κavg

decreases. We illustrate this in Fig. 12.

C. Proof of Proposition 4.2

Step 1: Unimodality of R(p). From (10),

U(xΦ) =
∑
t∈T

(
w(t)1−θxΦ(t)

θ − pκavgxΦ(t)
)
. (16)

Let v(xΦ(t)) = w(t)1−θxΦ(t)
θ − pκavgxΦ(t). The net-utility

U(xΦ) is maximized when v(xΦ(t)) is maximized for each
t. At given t,

∂v(xΦ(t))

∂xΦ(t)
= θw(t)1−θxΦ(t)

θ−1 − pκavg,

∂2v(xΦ(t))

∂xΦ(t)
2 = −θ(1 − θ)w(t)1−θxΦ(t)

θ−2.

Since θ ∈ (0, 1), ∂2v(xΦ(t))

∂xΦ(t)2
< 0. Therefore, v(x(t)) is

concave in x(t). Thus, at each time t, v(xΦ(t)) takes a unique
maximum at

x�
Φ(t) = min

{
φ(t), w(t)

(
θ

pκavg

) 1
1−θ

}

= w(t)min

{
Φ,

(
θ

pκavg

) 1
1−θ

}
.

The second equality holds since φ(t) = w(t)Φ and Φ =∑
t∈T φ(t). Moreover, it can be easily shown that v(x�

Φ(t)) >
0 for all t. This implies that a user with positive Φ subscribes
the service and x�

Φ(t) �= 0. Therefore,

∑
t∈T

x�
Φ(t) =

⎧⎪⎨
⎪⎩

Φ if Φ <
(

θ
pκavg

) 1
1−θ

Ψ(p) if Φ >
(

θ
pκavg

) 1
1−θ

where Ψ(p) =
(

θ
pκavg

) 1
1−θ

. Then, total user traffic over a day,∑
t∈T X(t) is as follows:∑
t∈T

X(t) = N̂

∫ Φmax

0

∑
t∈T

x�
φ(t)fΦ(Φ)dΦ

= N̂

(∫ Ψ(p)

0

ΦfΦ(Φ)dΦ +

∫ Φmax

Ψ(p)

Ψ(p)fΦ(Φ)dΦ

)

=

{
N̂Ψ(p)

(
1− Ψ(p)1−σ

(2−σ)Φ1−σ
max

)
if Ψ(p) ≤ Φmax.

N̂E[Φ] if Ψ(p) > Φmax.

We denote

B(p) =
∑
t∈T

Y (t; p) = κavg

∑
t∈T

X(t; p)

A(p) = max
t∈T

Y (t; p) = κpeak

∑
t∈T

X(t; p). (17)

By (11), the revenue of the provider is R(p) = (p− η)B(p).
We now show that R(p) is unimodal over P . Note that

Ψ(p) > Φmax ⇔ p < θ
(
κavgΦ

1−θ
max

)−1
.

If p < θ
(
κavgΦ

1−θ
max

)−1
, then B(p) is a positive constant,

B(p) = κavgN̂E[Φ], for all p ∈ P and ∂R(p)
∂p = κavgN̂E[Φ].

We now consider the case

p ≥ θ
(
κavgΦ

1−θ
max

)−1 ⇔ Ψ(p) ≤ Φmax.

Then for p ≥ θ
(
qΦ1−θ

max

)−1
,

B(p) = N̂κavgΨ(p)

(
1− Ψ(p)1−σ

(2− σ)Φ1−σ
max

)
> 0,

since B(p) > 0, sgn(R′(p)) = sgn
(

R′(p)
B(p)

)
. We will investi-

gate sgn(R′(p)) by investigating sgn
(

R′(p)
B(p)

)
and show that

∂R(p)
∂p has a unique solution p̂ of ∂R(p)

∂p = 0 by showing that
R′(p)
B(p) = 0 has a unique solution at p̂. The first and second
derivatives of B(p) are,

∂B(p)

∂p
=

−N̂κavgΨ(p)

p(1− θ)

(
1− Ψ(p)1−σ

Φ1−σ
max

)
,

∂B(p)2

∂2p
=

N̂κavgΨ(p)

p2(1− θ)2

(
(2− θ)− (3− σ − θ)Ψ(p)1−σ

Φ1−σ
max

)
.

Let B′(p) = ∂B(p)
∂p and B′′(p) = ∂B(p)2

∂2p . The first derivative
of revenue function R(p) is

∂R(p)

∂p
= (p− η)B′(p) +B(p). (18)

We have

∂
(

R′(p)
B(p)

)
∂p

=
B′(p)
B(p)

+ (p− η)
B′′(p)B(p)−B′(p)2

B(p)2

=
−l(p)

p2(1− θ)2B(p)2
< 0,

where

l(p) = (p− η)

(
(1− σ)2Ψ(p)1−σ

(2 − σ)Φ1−σ
max

)
+

η(1 − θ)

(
1− Ψ(p)1−σ

Φ1−σ
max

)
B(p)

> 0.

since p ≥ η, 0 ≤ Ψ(p) ≤ Φmax, B(p) > 0, and θ ∈ (0, 1).

Thus, R′(p)
B(p) is strictly decreasing in p. Note that R′(η)

B(η) = 1 >
0, and

lim
p→∞

R′(p)
B(p)

= 1 + lim
p→∞

− p−η
p(1−θ)

(
1− Ψ(p)1−σ

Φ1−σ
max

)
1− Ψ(p)1−σ

(2−σ)Φ1−σ
max

= 1− 1

1− θ
< 0,

since limp→∞ Ψ(p) = 0 and θ ∈ (0, 1). Therefore R′(p)
B(p < 0

for sufficiently large p. Considering that R′(p)
B(p) is a decreasing

function of p and R′(η)
B(η) > 0, there should be a unique p̂ ∈

(η,∞) such that R′(p)
B(p) = 0 (note that p̂ > η). Since B(p) > 0
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Fig. 13. An illustration of
∑

t∈T X(t; p), R(p), and ∂R(p)
∂p

over volume
price p.

for any p, R′(p) = 0 only at p̂. Summarizing, the sign of
R′(p) is

sgn(R′(p)) = sgn

(
R′(p)
B(p)

)

=

⎧⎨
⎩

+ if η ≤ p < p̂
0 if p = p̂
− if p > p̂.

Thus, R(p) is unimodal for p > η.

Step 2: Characterization of P . We now find the set of feasible
prices P . Since

∑
t∈T X(t) > 0 and κavg ≤ 1, the provider’s

revenue is negative if p ≤ η from (11). By the provider
rationality, i.e., R(p) > 0 for p ∈ P ,

p ∈ P ⇒ p > η. (19)

A(p) is nonincreasing in p, since

∂A(p)

∂p
=

{
0 if Ψ(p) > Φmax

−N̂kΨ(p)
p(1−θ)

(
1− Ψ(p)1−σ

Φ1−σ
max

)
if Ψ(p) ≤ Φmax

Thus, if p ∈ P , then

A(p) ≤ C3g ⇔ p ≥ pmin,

where pmin = inf{p | A(p) ≤ C3g}. Note that p0 =
max{pmin, η}. Thus, if η ≥ pmin, p0 = η and P = (p0,∞),
and if η < pmin, p0 = pmin and P = [p0,∞). Note
that pmin = 0 if and only if κpeakN̂E[Φ] ≤ C3g, since
A(0) = κpeakN̂E[Φ]. From Steps 1 and 2, the result (i) holds.

Step 3: Proof of (ii). If R′(p0) ≤ 0, p̂ ≤ p0, R(p0) > 0 and
p0 is the unique optimal price, since R′(p) ≤ 0 for p ∈ P .
From R(p0) > 0, p0 > η ≥ 0. Thus, A(p0) = C3g and the
network is opt-saturated.

We now show that ∂p0(κavg)
∂κavg

> 0. To study the impact of
κpeak, we regard κpeak as a variable, not a constant. Recall that
p� = p0 and A(p0) = C3g if the network is opt-saturated.
From (4),

κpeak =
C3g∑

t∈T X(t; p0)
, (20)

where X(t; p) is the total traffic arrival at time t when price is
p. We denote V (p) =

∑
t∈T X(t; p). Differentiating by κpeak,

we yield

∂p0
∂κpeak

=
−V (p0)

2

C3gV ′(p0)
> 0, (21)

where

∂V (p)

∂p
=

{
0 if Ψ(p) > Φmax
−N̂Ψ(p)
p(1−θ)

(
1− Ψ(p)1−σ

Φ1−σ
max

)
if Ψ(p) ≤ Φmax

since V (p) > 0 and V ′(p) < 0, for p ∈ P in opt-saturated
case. Note that V ′(p) = 0 only if κpeakV (p) = κpeakNE[Φ] >
C3g and κpeakV (p) ≤ C3g over P in opt-saturated case.
By (21), the optimal price p� decreases and actual payment
per unit traffic p�κavg decreases as κpeak decreases. We have
proven (ii) holds.

Step 4: Proof of (iii). We now consider the case R′(p0) > 0.
If η ≥ pmin, then P = (η,∞) and p̂ > η. Thus, p̂ is the
unique optimal price. To show that A(p̂) < C3g, we consider
two cases pmin = 0 and pmin > 0. Recall that pmin = 0 if and
only if κpeakN̂E[Φ] ≤ C3g, since A(0) = κpeakN̂E[Φ]. Thus, if
pmin = 0, A(pmin) = κpeakN̂E[Φ] ≤ C3g. Note that A′(p) < 0
for p such that Ψ(p) ≤ Φmax, i.e., p ≥ θ

(
κavgΦ

1−θ
max

)
. Since

p̂ ≥ θ
(
κavgΦ

1−θ
max

)
, A′(p̂) < 0 and A(p̂) < A(pmin) ≤ C3g. If

pmin > 0, A(pmin) = C3g < κpeakN̂E[Φ]. Since A′(p̂) < 0,
A(p̂) < A(p0) ≤ C3g. The network is opt-unsaturated. If
η < pmin, then p0 = pmin, P = [pmin,∞) and pmin > 0. Note
that A(pmin) = C3g if pmin > 0. Recall that if R′(p0) > 0,
then p̂ > p0 and p̂ is the unique optimal price. Since A(p̂) <
A(pmin) = C3g (see Fig. 13), the network is opt-unsaturated.

We now show that ∂(p̂(κavg)κavg)
∂κavg

> 0 so that the optimal per-
traffic payment is reduced as κavg decreases. We use p̂(κavg)
to emphasize the impact of κavg. From (18) and the condition
R′(p̂(κavg)) = 0,

p̂(κavg)− η = − B(p̂)

B′(p̂)

=
p̂(1 − θ)

(
1− h(κavg)

2−σ

)
1− h(κavg)

,

where h(κavg) =

(
θ

p̂(κavg)κavg

) 1−σ
1−θ

Φ̄1−σ
max

> 0. Differentiating by p̂

and rearranging it, the derivative ∂p̂
∂κavg

is as follows:

∂p̂

∂κavg
= − p̂

κavg

(1− σ)2h(κavg)

L(κavg) + (1− σ)2h(κavg)
,

where L(κavg) =
(
1−h(κavg)

)(
θ(2−σ)−h(κavg)(1+θ−σ)

)
.

Thus, the derivative of payment per unit traffic is,
∂(p̂(κavg)κavg)

∂κavg
= p̂+ κavg

∂p̂

∂κavg

= p̂

(
L(κavg)

L(κavg) + (1− σ)2h(κavg)

)
.

We want to show that ∂(p̂(κavg)κavg)
∂κavg

> 0. From the condition
R′(p̂(κavg)) = 0, we have

1− h(κavg)
2−σ

1− h(κavg)
=

p− η

p(1− θ)
≤ 1

1− θ
,

since p̂ ≥ η, η ≥ 0 and θ ∈ (0, 1). Thus, h(κavg) ≤ θ(2−σ)
3−σ−θ .

Applying this condition to L(κavg), we have L(κavg) > 0 and
therefore,

∂p̂(κavg)

∂κavg
< 0 and

∂(p̂(κavg)κavg)

∂κavg
> 0.

Note that actual payment per unit traffic p̂(κavg)κavg is increas-
ing as κavg decreases. We have proven (iii) holds.
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D. Proof of Theorem 4.2

(i) Opt-saturated. Recall that the net-utility of a subscriber
with Φ is∑

t∈T

w(t)1−θx�
Φ(t)

θ − pκavg

∑
t∈T

x�
Φ(t)

where

x�
Φ(t) = min

{
φ(t), w(t)

(
θ

pκavg

) 1
1−θ

}
,

and Φ =
∑

t∈T φ(t). Therefore the net utility of a user is
given by

UΦ(x
�
Φ) =

⎧⎪⎨
⎪⎩

Φθ − pκavgΦ if Φ <
(

θ
pκavg

) 1
1−θ

(
1− θ

1
1−θ

)(
θ

pκavg

) θ
1−θ

if Φ >
(

θ
pκavg

) 1
1−θ

.

It is clear that the net-utility of a user increases as p decreases.
Consider the revenue function at the optimal price p�;

R(p�). When a network is opt-saturated, by Proposi-
tion 4.2(ii), p� = p0 such that A(p0) = C3g. From (20), p�

is dependent of κpeak. To show that R(p�) increases as κpeak

decreases, we will show that ∂R(p�)
∂κpeak

< 0. The first derivative
of R(p�) with respect to κpeak is,

∂R(p�)

∂κpeak
=

∂R(p�)

∂p�
∂p�

∂κpeak
.

From (21), p� is an increasing function of κpeak. Therefore, it
is enough to show that ∂R(p�)

∂p� < 0. We have already proven

that ∂R(p�)
∂p� < 0 over P for an opt-saturated network in the

proof of Proposition 4.2(ii).

(ii) Opt-unsaturated. By the same argument of Theorem 4.2(i),
net utility of a user and user surplus are increasing as κavg

decreases.
We now show that revenue is increasing as κavg decreases.

We will use R(p, κavg), Y (t; p, κavg) and P(κavg) to empha-
size the impact of κavg. Suppose that κavg is decreased by a
factor of ρ < 1. i.e., κnew

avg = ρκavg. Let pnew := p
ρ . If we show

that

∀ p ∈ P(κavg) ⇒ pnew ∈ P (κnew
avg

)
and R

(
pnew, κnew

avg

)
> R(p, κavg) hold, then

R(p�, κavg) < R

(
p�

ρ
, κnew

avg

)
≤ max

p∈P(κnew
avg )

R(p, κnew
avg )

where p� is the optimal price with κnew
avg which implies that the

maximum revenue is increasing as κavg is decreasing.
We show that pnew ∈ P(κnew

avg

)
; R(pnew, κnew

avg ) > 0 and
maxt∈T Y (t; pnew, κnew

avg ) ≤ C3g. By (16), it is obvious that

Up,κavg(x) = Upnew,κnew
avg
(x).

Since the user optimization problems are identical, the total
traffics are the same, x�new = x�. Then the corresponding 3G
traffic ynew and y satisfy∑

t∈T

ynew = κnew
avg

∑
t∈T

x�(t) = ρ
∑
t∈T

y(t) <
∑
t∈T

y(t).

Therefore∑
t∈T

Y
(
t; pnew, κnew

avg

)
= ρ

∑
t∈T

Y (t; p, κavg) (22)

<
∑
t∈T

Y (t; p, κavg),

Consider the corresponding revenue function R(p, κavg) and
R(pnew, κnew

avg ).

R
(
pnew, κnew

avg

)
=

(
p

ρ
− η

)∑
t∈T

Y
(
t; pnew, κnew

avg

)
= (p− ρη)

∑
t∈T

Y (t; p, κavg) (∵ (22))

> R(p, κavg) (∵ p ∈ P(κavg)),

where R(p, κavg) = (p−η)
∑

t∈T Y (t; p, κavg) . Now we have
shown that R

(
pnew, κnew

avg

)
> R(p, κavg) > 0. Hence ρ−1p ∈

P (κnew
avg

)
.
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