Problem 8.1.5

Since J_1 , J_2 and J_3 are independent, we can write

$$P_{\mathbf{K}}(\mathbf{k}) = P_{J_1}(k_1) P_{J_2}(k_2 - k_1) P_{J_3}(k_3 - k_2). \tag{1}$$

Since $P_{J_i}(j) > 0$ only for integers j > 0, we have that $P_{\mathbf{K}}(\mathbf{k}) > 0$ only for $0 < k_1 < k_2 < k_3$; otherwise $P_{\mathbf{K}}(\mathbf{k}) = 0$. Finally, for $0 < k_1 < k_2 < k_3$,

$$P_{\mathbf{K}}(\mathbf{k}) = (1-p)^{k_1-1}p(1-p)^{k_2-k_1-1}p(1-p)^{k_3-k_2-1}p$$

= $(1-p)^{k_3-3}p^3$. (2)

Problem 8.2.5

We find the marginal PDFs using Theorem 5.26. First we note that for x < 0, $f_{X}(x) = 0$. For $x_1 > 0$,

$$f_{X_1}(x_1) = \int_{x_1}^{\infty} \left(\int_{x_2}^{\infty} e^{-x_3} dx_3 \right) dx_2 = \int_{x_1}^{\infty} e^{-x_2} dx_2 = e^{-x_1}.$$
 (1)

Similarly, for $x_2 \ge 0$, X_2 has marginal PDF

$$f_{X_2}(x_2) = \int_0^{x_2} \left(\int_{x_2}^{\infty} e^{-x_3} dx_3 \right) dx_1 = \int_0^{x_2} e^{-x_2} dx_1 = x_2 e^{-x_2}.$$
 (2)

Lastly,

$$f_{X_3}(x_3) = \int_0^{x_3} \left(\int_{x_1}^{x_3} e^{-x_3} dx_2 \right) dx_1$$

$$= \int_0^{x_3} (x_3 - x_1) e^{-x_3} dx_1$$

$$= -\frac{1}{2} (x_3 - x_1)^2 e^{-x_3} \Big|_{x_1 = x_3}^{x_1 = x_3} = \frac{1}{2} x_3^2 e^{-x_3}.$$
(3)

The complete expressions for the three marginal PDFs are

$$f_{X_1}(x_1) = \begin{cases} e^{-x_1} & x_1 \ge 0, \\ 0 & \text{otherwise,} \end{cases}$$
 (4)

$$f_{X_2}(x_2) = \begin{cases} x_2 e^{-x_2} & x_2 \ge 0, \\ 0 & \text{otherwise,} \end{cases}$$
 (5)

$$f_{X_2}(x_2) = \begin{cases} x_2 e^{-x_2} & x_2 \ge 0, \\ 0 & \text{otherwise}, \end{cases}$$

$$f_{X_3}(x_3) = \begin{cases} (1/2)x_3^2 e^{-x_3} & x_3 \ge 0, \\ 0 & \text{otherwise}. \end{cases}$$
(5)

In fact, each X_i is an Erlang $(n, \lambda) = (i, 1)$ random variable.

Problem 8.3.1

For discrete random vectors, it is true in general that

$$P_{Y}(y) = P[Y = y] = P[AX + b = y] = P[AX = y - b].$$
 (1)

For an arbitrary matrix A, the system of equations Ax = y - b may have no solutions (if the columns of A do not span the vector space), multiple solutions (if the columns of A are linearly dependent), or, when A is invertible, exactly one solution. In the invertible case,

$$P_{\mathbf{Y}}(\mathbf{y}) = P[\mathbf{AX} = \mathbf{y} - \mathbf{b}] = P[\mathbf{X} = \mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})] = P_{\mathbf{X}}(\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})).$$
 (2)

As an aside, we note that when Ax = y - b has multiple solutions, we would need to do some bookkeeping to add up the probabilities $P_X(x)$ for all vectors x satisfying Ax = y - b. This can get disagreeably complicated.

Problem 8.4.2

The mean value of a sum of random variables is always the sum of their individual means.

$$\mathsf{E}[Y] = \sum_{i=1}^{n} \mathsf{E}[X_i] = 0. \tag{1}$$

The variance of any sum of random variables can be expressed in terms of the individual variances and co-variances. Since the $\mathsf{E}[Y]$ is zero, $\mathsf{Var}[Y] = \mathsf{E}[Y^2]$. Thus,

$$Var[Y] = E\left[\left(\sum_{i=1}^{n} X_i\right)^2\right]$$

$$= E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j\right]$$

$$= \sum_{i=1}^{n} E\left[X_i^2\right] + \sum_{i=1}^{n} \sum_{j \neq i} E\left[X_i X_j\right]. \tag{2}$$

Since $E[X_i] = 0$, $E[X_i^2] = Var[X_i] = 1$ and for $i \neq j$,

$$\mathsf{E}\left[X_{i}X_{j}\right] = \mathsf{Cov}\left[X_{i}, X_{j}\right] = \rho \tag{3}$$

Thus, $Var[Y] = n + n(n-1)\rho$.

Problem 8.4.12

Given an arbitrary random vector X, we can define $Y=X-\mu_X$ so that

$$C_{X} = E\left[(X - \mu_{X})(X - \mu_{X})' \right] = E\left[YY' \right] = R_{Y}. \tag{1}$$

It follows that the covariance matrix \mathbf{C}_X is positive semi-definite if and only if the correlation matrix \mathbf{R}_Y is positive semi-definite. Thus, it is sufficient to show that every correlation matrix, whether it is denoted \mathbf{R}_Y or \mathbf{R}_X , is positive semi-definite.

To show a correlation matrix $R_{\mathbf{X}}$ is positive semi-definite, we write

$$\mathbf{a}'\mathbf{R}_{\mathbf{X}}\mathbf{a} = \mathbf{a}' \,\mathsf{E} \left[\mathbf{X}\mathbf{X}'\right] \mathbf{a} = \mathsf{E} \left[\mathbf{a}'\mathbf{X}\mathbf{X}'\mathbf{a}\right] = \mathsf{E} \left[(\mathbf{a}'\mathbf{X})(\mathbf{X}'\mathbf{a})\right] = \mathsf{E} \left[(\mathbf{a}'\mathbf{X})^2\right]. \tag{2}$$

We note that $W = \mathbf{a}'\mathbf{X}$ is a random variable. Since $\mathsf{E}[W^2] \geq 0$ for any random variable W,

$$\mathbf{a}'\mathbf{R}_{\mathbf{X}}\mathbf{a} = \mathsf{E}\left[W^2\right] \ge 0. \tag{3}$$

Problem 8.5.5

(a) C must be symmetric since

$$\alpha = \beta = \mathsf{E}\left[X_1 X_2\right]. \tag{1}$$

In addition, α must be chosen so that ${\bf C}$ is positive semi-definite. Since the characteristic equation is

$$\det (\mathbf{C} - \lambda \mathbf{I}) = (1 - \lambda)(4 - \lambda) - \alpha^2$$
$$= \lambda^2 - 5\lambda + 4 - \alpha^2 = 0,$$
 (2)

the eigenvalues of C are

$$\lambda_{1,2} = \frac{5 \pm \sqrt{25 - 4(4 - \alpha^2)}}{2}.$$
 (3)

The eigenvalues are non-negative as long as $\alpha^2 \le 4$, or $|\alpha| \le 2$. Another way to reach this conclusion is through the requirement that $|\rho_{X_1X_2}| \le 1$.

(b) It remains true that $\alpha = \beta$ and C must be positive semi-definite. For X to be a Gaussian vector, C also must be positive definite. For the eigenvalues of C to be strictly positive, we must have $|\alpha| < 2$.

(c) Since ${\bf X}$ is a Gaussian vector, W is a Gaussian random variable. Thus, we need only calculate

$$\mathsf{E}[W] = 2 \,\mathsf{E}[X_1] - \mathsf{E}[X_2] = 0, \tag{4}$$

and

$$Var[W] = E[W^{2}] = E[4X_{1}^{2} - 4X_{1}X_{2} + X_{2}^{2}]$$

$$= 4 Var[X_{1}] - 4 Cov[X_{1}, X_{2}] + Var[X_{2}]$$

$$= 4 - 4\alpha + 4 = 4(2 - \alpha).$$
(5)

The PDF of W is

$$f_W(w) = \frac{1}{\sqrt{8(2-\alpha)\pi}} e^{-w^2/8(2-\alpha)}.$$
 (6)

Problem 8.5.13

As given in the problem statement, we define the m-dimensional vector X, the n-dimensional vector Y and $W = \begin{bmatrix} X' \\ Y' \end{bmatrix}'$. Note that W has expected value

$$\mu_{\mathbf{W}} = \mathsf{E}\left[\mathbf{W}\right] = \mathsf{E}\left[\begin{bmatrix}\mathbf{X}\\\mathbf{Y}\end{bmatrix}\right] = \begin{bmatrix}\mathsf{E}\left[\mathbf{X}\right]\\\mathsf{E}\left[\mathbf{Y}\right]\end{bmatrix} = \begin{bmatrix}\mu_{\mathbf{X}}\\\mu_{\mathbf{Y}}\end{bmatrix}.\tag{1}$$

The covariance matrix of \mathbf{W} is

$$C_{W} = E \left[(W - \mu_{W})(W - \mu_{W})' \right]$$

$$= E \left[\begin{bmatrix} X - \mu_{X} \\ Y - \mu_{Y} \end{bmatrix} \left[(X - \mu_{X})' \quad (Y - \mu_{Y})' \right] \right]$$

$$= \begin{bmatrix} E \left[(X - \mu_{X})(X - \mu_{X})' \right] & E \left[(X - \mu_{X})(Y - \mu_{Y})' \right] \\ E \left[(Y - \mu_{Y})(X - \mu_{X})' \right] & E \left[(Y - \mu_{Y})(Y - \mu_{Y})' \right] \end{bmatrix} = \begin{bmatrix} C_{X} & C_{XY} \\ C_{YX} & C_{Y} \end{bmatrix}.$$
 (2)

The assumption that X and Y are independent implies that

$$C_{XY} = E[(X - \mu_X)(Y' - \mu'_Y)] = (E[(X - \mu_X)] E[(Y' - \mu'_Y)] = 0.$$
 (3)

This also implies $C_{YX}=C_{XY}^{\prime}=0^{\prime}.$ Thus

$$C_{W} = \begin{bmatrix} C_{X} & 0\\ 0' & C_{Y} \end{bmatrix}. \tag{4}$$

Problem 8.5.14

(a) If you are familiar with the Gram-Schmidt procedure, the argument is that applying Gram-Schmidt to the rows of $\mathbf A$ yields m orthogonal row vectors. It is then possible to augment those vectors with an additional n-m orothogonal vectors. Those orthogonal vectors would be the rows of $\tilde{\mathbf A}$.

An alternate argument is that since A has rank m the nullspace of A, i.e., the set of all vectors y such that Ay=0 has dimension n-m. We can choose any n-m linearly independent vectors y_1,y_2,\ldots,y_{n-m} in the nullspace A. We then define \tilde{A}' to have columns y_1,y_2,\ldots,y_{n-m} . It follows that $A\tilde{A}'=0$.

(b) To use Theorem 8.11 for the case m=n to show

$$\bar{\mathbf{Y}} = \begin{bmatrix} \mathbf{Y} \\ \hat{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \hat{\mathbf{A}} \end{bmatrix} \mathbf{X}. \tag{1}$$

is a Gaussian random vector requires us to show that

$$\bar{\mathbf{A}} = \begin{bmatrix} \mathbf{A} \\ \hat{\mathbf{A}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \tilde{\mathbf{A}} \mathbf{C}_{\mathbf{X}}^{-1} \end{bmatrix} \tag{2}$$

is a rank n matrix. To prove this fact, we will suppose there exists w such that $\bar{A}w=0$, and then show that w is a zero vector. Since w and w together have w linearly independent rows, we can write the row vector w' as a linear combination of the rows of w and w. That is, for some w and w,

$$\mathbf{w}' = \mathbf{v}\mathbf{t}'\mathbf{A} + \tilde{\mathbf{v}}'\tilde{\mathbf{A}}.\tag{3}$$

The condition $\bar{A}w=0$ implies

$$\begin{bmatrix} \mathbf{A} \\ \tilde{\mathbf{A}} \mathbf{C}_{\mathbf{X}}^{-1} \end{bmatrix} (\mathbf{A}' \mathbf{v} + \tilde{\mathbf{A}}' \tilde{\mathbf{v}}') = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}. \tag{4}$$

This implies

$$AA'v + A\tilde{A}'\tilde{v} = 0, \tag{5}$$

$$\tilde{\mathbf{A}}\mathbf{C}_{\mathbf{Y}}^{-1}\mathbf{A}\mathbf{v} + \tilde{\mathbf{A}}\mathbf{C}_{\mathbf{Y}}^{-1}\tilde{\mathbf{A}}'\tilde{\mathbf{v}} = 0. \tag{6}$$

Since $A\tilde{A}'=0$, it follows that AA'v=0. Since A is rank m, AA' is an $m\times m$ rank m matrix. It follows that v=0. We can then conclude that

$$\tilde{\mathbf{A}}\mathbf{C}_{\mathbf{x}}^{-1}\tilde{\mathbf{A}}'\tilde{\mathbf{v}} = 0. \tag{7}$$

This would imply that $\tilde{v}'\tilde{A}C_X^{-1}\tilde{A}'\tilde{v}=0$. Since C_X^{-1} is invertible, this would imply that $\tilde{A}'\tilde{v}=0$. Since the rows of \tilde{A} are linearly independent, it must be that $\tilde{v}=0$. Thus \bar{A} is full rank and \bar{Y} is a Gaussian random vector.

(c) We note that By Theorem 8.11, the Gaussian vector $\overline{Y} = \overline{A}X$ has covariance matrix

$$\bar{\mathbf{C}} = \bar{\mathbf{A}}\mathbf{C}_{\mathbf{X}}\bar{\mathbf{A}}'. \tag{8}$$

Since $(C_X^{-1})' = C_X^{-1}$,

$$\bar{\mathbf{A}}' = \begin{bmatrix} \mathbf{A}' & (\tilde{\mathbf{A}} \mathbf{C}_{\mathbf{X}}^{-1})' \end{bmatrix} = \begin{bmatrix} \mathbf{A}' & \mathbf{C}_{\mathbf{X}}^{-1} \tilde{\mathbf{A}}' \end{bmatrix}. \tag{9}$$

Applying this result to Equation (8) yields

$$\bar{\mathbf{C}} = \begin{bmatrix} \mathbf{A} \\ \tilde{\mathbf{A}} \mathbf{C}_{\mathbf{X}}^{-1} \end{bmatrix} \mathbf{C}_{\mathbf{X}} \begin{bmatrix} \mathbf{A}' & \mathbf{C}_{\mathbf{X}}^{-1} \tilde{\mathbf{A}}' \end{bmatrix}
= \begin{bmatrix} \mathbf{A} \mathbf{C}_{\mathbf{X}} \\ \tilde{\mathbf{A}} \end{bmatrix} \begin{bmatrix} \mathbf{A}' & \mathbf{C}_{\mathbf{X}}^{-1} \tilde{\mathbf{A}}' \end{bmatrix}
= \begin{bmatrix} \mathbf{A} \mathbf{C}_{\mathbf{X}} \mathbf{A}' & \mathbf{A} \tilde{\mathbf{A}}' \\ \tilde{\mathbf{A}} \mathbf{A}' & \tilde{\mathbf{A}} \mathbf{C}_{\mathbf{X}}^{-1} \tilde{\mathbf{A}}' \end{bmatrix}.$$
(10)

Since $\tilde{A}A'=0$,

$$\bar{\mathbf{C}} = \begin{bmatrix} \mathbf{A}\mathbf{C}_{\mathbf{X}}\mathbf{A}' & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{A}}\mathbf{C}_{\mathbf{X}}^{-1}\tilde{\mathbf{A}}' \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{\mathbf{Y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{\hat{\mathbf{Y}}} \end{bmatrix}. \tag{11}$$

We see that \bar{C} is block diagonal covariance matrix. From the claim of Problem 8.5.13, we can conclude that Y and \hat{Y} are independent Gaussian random vectors.