Problem 8.1.5

Since .Jq, Jo and .J3 are independent, we can write

Px (k) = Py, (k1) Py, (ko — k1) Pry(k3 — k2) . (1)
Since P;(j) > 0 only for integers j > 0, we have that Pg(k) > 0 only for
0 < k1 < ko < k3; otherwise Pi(k) = 0. Finally, for 0 < k1 < ko < k3,

P (k) = (1 = p)"171p(1 — )21 tp(1 — p)ls=hap
= (1-p)t 3 (2)

Problem 8.2.5

We find the marginal PDFs using Theorem 5.26. First we note that for z < 0, fx(z) = 0.

For =1 > 0,
o0 oo o0
fx (r1) = / (/ e e d:r3) dro = / e P2 dry = e ¥, (1)
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Similarly, for z» > 0, X2 has marginal PDF
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Ix,(z2) = f (f e T2 da:g) dr, = ] e "2 dr] = 100 2. (2)
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fx.(x3) = f (] e T2 d;rg) drq
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Lastly,
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The complete expressions for the three marginal PDFs are

e ™ a1 >0,

- " = 4
fx, (1) {0 otherwise, @
o JwoeT™ x>0,
fx.(x2) = {0 otherwise, “
(1/2).1‘%9,_13 r3 > 0,
- " = — 6
fx.(x3) {0 otherwise. ©)

In fact, each X; is an Erlang (n,\) = (i,1) random variable.



Problem 8.3.1

For discrete random vectors, it is true in general that
Py(y)=P[Y=y]=P[AX+b=y]=P[AX =y - b]. (1)

For an arbitrary matrix A, the system of equations Ax =y — b may have
no solutions (if the columns of A do not span the vector space), multiple
solutions (if the columns of A are linearly dependent), or, when A is
invertible, exactly one solution. In the invertible case,

Py(y)=P[AX=y-b]=P[X=A'(y-b)|=rx(A7 vy -b). (2
As an aside, we note that when Ax = y — b has multiple solutions, we

would need to do some bookkeeping to add up the probabilities Px(x) for
all vectors x satisfying Ax = y—b. This can get disagreeably complicated.

Problem 8.4.2

The mean value of a sum of random variables is always the sum of their individual
means.

Ey]=) E[X]=0. (1)
1=1

The variance of any sum of random variables can be expressed in terms of the individual
variances and co-variances. Since the E[Y] is zero, Var[Y] = E[Y?]. Thus,

i n 2
Var[Y] = E (ZX) ]
i=1
=E|) ) XX,
_i:l j=1
= Z E[X?] + Z Z E[X.X;]. (2)
i=1 i=1 j#i
Since E[X;] =0, E[X?] = Var[X;] = 1 and for i # j,
E[XiX;] = Cov [X;, Xl =p (3)

Thus, Var[Y] =n+ n(n—1)p.



Problem 8.4.12

Given an arbitrary random vector X, we can define Y = X — pux so that

Cx = E[(X - px)(X = px)'| = E[YY'] = Ry. (1)

It follows that the covariance matrix Cx is positive semi-definite if and
only if the correlation matrix Ry, is positive semi-definite. Thus, it is
sufficient to show that every correlation matrix, whether it is denoted Ry
or Rx, is positive semi-definite.

To show a correlation matrix Rx is positive semi-definite, we write

a'Rxa = a'E |[XX'|a = E [a/XX'a| = E[(2'X)(X'a)| = E[(2'X)?]. (2

We note that W = a’X is a random variable. Since E[W?Z2] > 0 for any
random variable W,

aRxa=E|W?| > 0. (3)

Problem 8.5.5

(2)

(b)

C must be symmetric since

a=j3=E[X1Xa]. (1)

In addition, @ must be chosen so that C is positive semi-definite.
Since the characteristic equation is

det (C—AI) = (1 —=A)(4—)\) —a?
=X -—5)A+4-—a?=0, (2)

the eigenvalues of C are

544/25 —4(4 — a?
v RUEe) -

The eigenvalues are non-negative as long as a< < 4, or |of < 2.
Another way to reach this conclusion is through the requirement that

Moo=

x| < 1.

It remains true that o« = 8 and C must be positive semi-definite. For
X to be a Gaussian vector, C also must be positive definite. For
the eigenvalues of C to be strictly positive, we must have |a| < 2.



(c) Since X is a Gaussian vector, W is a Gaussian random variable. Thus,
we need only calculate

E[W]=2E[X;] - E[X,] =0, (4)
and
Var[IW] = E [W?| = E[4X7 — 4X1 X5 + X3
= 4 Var[X1] — 4 Cov [X1, X5] + Var[X5]
=4 —4a+4=4(2—a). (5)
The PDF of W is

fiv (w) = e /B(2-), (6)

\/8(2 —a)r

Problem 8.5.13

As given in the problem statement, we define the m-dimensional vector X, the n-
Xi
Yf

o e 3] - <R - ]
The covariance matrix of W is
Cw = E[(W — pw)(W — py)']

S I IC T RNe ]

— [E [(X - Nx)(X - Hx)'] E [(X - Hx)(Y - Hy)']} — [ Cx CXY] (2)
ENY —puy) (X —px)] E[(Y —py)(Y — py)'] Cyx Gy |~

The assumption that X and Y are independent implies that

Cxy = E [(X — px)(Y' — )] = (E[(X — p)] E [(Y' — )] = 0. (3)
This also implies Cyx = Cyy = 0. Thus

)
dimensional vector Y and W = [ } . Note that W has expected value

Cx 0} (4)

C“r = [ 0 CY

Problem 8.5.14

(a) If you are familiar with the Gram-Schmidt procedure, the argument is that applying
Gram-Schmidt to the rows of A vields m orthogonal row vectors. It is then possible
to augment those vectors with an additional n — m orothogonal vectors. Those
orthogonal vectors would be the rows of A
An alternate argument is that since A has rank m the nullspace of A, i.e., the set
of all vectors y such that Ay = 0 has dimension n —m. We can choose any n —m
linearly independent vectors yi1,¥y2,..., Va—m iN the nullspace A. We then define A’

to have columns yi1,y2,..., Vn—m. It fOllows that AA'=0.



(b) To use Theorem 8.11 for the case m = n to show

- Y A

Y= [Y} = [A} X. (1)
is a Gaussian random vector requires us to show that

— A A

A=) = s @

is a rank n matrix. To prove this fact, we will suppose there exists w such that
Aw = 0, and then show that w is a zero vector. Since A and A together have n
linearly independent rows, we can write the row vector w’ as a linear combination
of the rows of A and A. That is, for some v and ¥,

w = vt'/A + A, (3)
The condition Aw = 0 implies
A I A=ty 0
This implies
AAV + AAT =0, (5)
AC' AV +ACHAY = 0. (6)
Since AA’ = 0, it follows that AA'v = 0. Since A is rank m, AA’ is an m x m rank
m matrix. It follows that v = 0. We can then conclude that
AC{'A'v =o0. (7)

This would imply that ¥/AC{*A’¥ = 0. Since C3! is invertible, this would imply
that A’%¥ = 0. Since the rows of A are linearly independent, it must be that ¥ = 0.
Thus A is full rank and Y is a Gaussian random vector.

(c) We note that By Theorem 8.11, the Gaussian vector Y = AX has covariance matrix

C =ACxA" (8)
Since (C3h) = ¢,

A=A (ACLYY] = (A CMAY. (9)
Applying this result to Equation (8) yields

_ [ A ~
C= Ac;(l] Cx [A" CA]
AEX] [A’ C;{lgr]

ACxA’  AA’

= | Air ACXIA/]- (10)

Since AA’ =0,
__[acxar 0 ] _[cy o
€= [ 0 ficilﬁ’] B [ 0 CY] an

We see that C is block diagonal covariancg matrix. From the claim of Prob-
lem 8.5.13, we can conclude that Y and Y are independent Gaussian random
vectors.



